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The second period Is constituted by J.von Neumann's and 0. Morgenstern's 

monograph Itself which Incorporated most of the results obtained earlier 

(which were, by the way, not too numerous according to present mathematical 

standards). It has offered for the first time a mathematical approach  to 

games (both in the concrete and In the abstract sense of this word) in the 

form of a systematic theory.  In the history of mathematics only few books 

can be found which, like J.von Neumann's and 0. Morgenstern's monograph, 

have established a complicated. Important, and at the same time unconventional 

mathematical discipline practically In the "empty space". 

In Its third stage game theory differs eventually only little In Its 

approach to the objects to be studied from other mathematical disciplines; 

and develops at a considerable rate In a way similar to all of them.  Resides, 

It is clear that the specific characteristics of Its actual, as well as 

potential, applications have a decisive Impact on the development of tht 

different branches of game theory. 

Wiat has been said also determines the general structure of this 

survey article. Its chapters correspond to the historical periods of game 

theory outlined above. Obviously, the present article cannot pretend to 

be an exhaustive account of all facts which are Important for the history 

of game theory. That should be left to special Investigations. 



Chapter      I 

BEFORE      THE      MONOGRAPH 

§1:     The Indetermlnateness of  the Outcome of a Game and Its Sources 

1.    Since games of  the competitive type are models or  imitations of 

conflicts,  an indeterminateness of outcome is usually characteristic.    This 

circumstance especially prompts  those contestants who are doomed to defeat 

from the beginning,  to enter consciously into the conflict.    And it is this 

same circumstance that attraccfe both the participants in a competition and 

Its bystanders.    Eventually,  owing to this fact,  each decision made by a 

player  In the course of a game turns out to be subject to  Indeterminateness. 

Quantitative characteristics of indeterminateness as studied by the 

theory of   information   ( or  the  theory of complexities)   undoubtedly influence 

decision-making under such conditions.    In the framework of game theory, 

however,   these Influences have been insufficiently explored and only some 

episodical studies of game  theoretic character have been dedicated to this 

problem. 

From a purely qualitative point of view the causes of  indeterminateness 

In the result of a game can be divided into three classes. 

2.     Let us begin with the case where the rules of  the game allow for 

such a multitude of plays  that  an a priori prediction of  the outcome of each 

play  is practically Impossible,  while,   in principle,  abstracting from the 



i .I.IIW ■ i. ill  I II «^ 

-A- 

dlfference between potential and actual feasibility, no obstacle to such a 

prediction exists. 

Sources of indeterminateness of this type can be called combinatorial, 

and games whose outcomes are unpredictable for these combinatorial reasons 

can be called combinatorial games.  Chess, for example, is a typical 

combinatorial game. 

Obviously, the combinatorial complexity of a game Is of a historically 

transitory character.  The development of certain methods of playing a game 

"correctly", sometimes generalized in the form of a suitable mathematical 

apparatus, makes most variants of playing the game more and more transparent, 

and the utilization of computing techniques is extending the concept of 

"transparence" Itself. 

At present, several games are in different stages of this historical 

process. Those games for which this process has come to an end practically 

lose their competitive character and become merely entertaining; they may 

still be, however, of some pedagogical and sometimes also scientific value. 

That has happened, for Instance, to the well-known ''Nim" games where the 

players alternately take objects from some baskets according to the given 

rules. These games can be completely formalized, and finding the winning 

combinations (If such winning combinations exist) reduces to the solution 

of not too voluminous logical problems. 

Although the purely logical principles do not allow an extensive analysis 

of other more complicated games, they often lead to some predictions of 

general character. Eventually, in games of a complexity comparable roughly 

to that of chess, the logical considerations do not go beyond the sphere of 
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coramon sense ( which may be sometimes nevertheless rather acute) , and the 

aptitude of analyzing, evaluating and comparing large numbers of variants 

becomes a central part of  the art of playing a game. 

3.     The second  source of  indeterminateness in the outcome of a game 

Is the  influence of chance factors.    Chance can appear in a game either as 

the result of certain "natural forces"   (dispersion of shots, meteorological 

conditions,  random causes of overflows in channels of mass service systems, 

etc.)   perform "randomized" acts organized in a special manner   (tossing coins 

or  throwing dice, using tables of random digits,  etc.). 

Games whose outcomes are indeterminate solely by virtue of chance are 

called games of hazard.    Typical  examples of    games of hazard are games of 

dice of any variety and also the game "Matching Pennies"  in the special form 

where one player tosses a coin and his adversary tries to guess the side it 

shows.    A game of pure hazard is also the well-known roulecte.    There is 

nothing  to be said about the correct or optimal behavior of a player in a 

game of hazard:    The outcome of the game does not depend on his actions. 

The only decisions  the player is able to make concern the advisability of his 

participation in or his absence from a game depending on Its rules.    Such 

decisions belong however to a considerable degree to the psychological shpere 

(see 1.3.A *)). 

*) Here and  further,   references to parts of  this article are denoted as 
above.    In references  to J.  von Neumann's and 0. Morgenstern's mono- 
graph the work  "Chapter",  the symbol "§",  and  the letter "i", are used 
In front of the respective numbers of chapters,  paragraphs, and  items. 
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Of course, games can be found which combine features of both 

combinatorial games and games of hazard. To this class of games belong, for 

example. Backgammon (Tric-Trac) with its presently rather numerous variants 

and also various kinds of card solitaires where the indeterminateness Is 

created on the one hand by the chance arrangement of cards in the card deck, 

and on the other hand by the combinatorial complexity of the configurations 

made up by the uncovered cards on the table, 

4. The third source of indeterminateness in the outcome of a game Is 

of strategic origin; The player may not know what action his adversary 

chooses. Contrary to the two previously mentioned sources of indeterminateness, 

this one Is founded in the very nature of a game. It originates from the 

other participants in the game which may be real ( man, collectivity) as well 

as conditional (nature, circumstances). Games in which the indeterminateness 

of the outcome stems from the Indicated strategical causes are called 

strategic games. Strange as it may seem strategic games in their pure form 

are relatively rare. The simplest example of a strategic game is the game 

"Matching Pennies" in the form where two players Independently of each other 

put a coin on the table. If both coins show the same side the first player 

wins, otherwise the second. Despite all Its primitivity this game appears 

to be in some respect "more difficult" than, say, chess. A play of chess 

takes place on an open board, and it is possible to Imagine an "ideal player" 

who overlooks all possibilities emerging from each position. Each move 

thought through by one of the players Is deliberated to the same extent by 

his opponent. In contrast to that, in the described game "Matching Pennies" 
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a player Is unable In principle to recognize what his adversary has done. 

It is especially this feature that makes such a game a strategic one. 

As to the correctness and optlmality of the behavior of a player, 

matters here are essentially more complicated than in the previously 

described cases. It is obvious that putting the coin heads or tails cannnot 

per se mean good or bad behavior, for as N. Wiener has remarked,".. .the 

efficacy of a weapon depends on precisely what other weapons there are to 

meet It..." /I/. 

Actually, in strategic games optimal behavior is randomized. Applied 

to "Matching Pennies" this means that it is not advisable to put the coin 

on the table showing a specific side, but to toss it in such a manner that 

each of its sides can fall with equal chances. 

The strategic property of a game can be combined with a combinatorial 

property ("kriegsspiel" - a kind of chess where each player playing on his 

own board sees only his figures and an umpire removes them in case of their 

capture, announces checks, and decides on checkmate or stalemate), or a 

hazard property (poker) , or with both combinatorial and hazard properties 

at the same time ("Pre-ference" - where the hazard property comes from the 

chance deal of cards, tho strategic property results from the prescriptions 

of the game and the determination of "pairing", and the combinatorial property 

comes from the difficulty to orlenta*.? oneself in the cards even if they are 

uncovered) . 

i     ■■■■—— 
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§2:    Combinatorial Games 

1.    Evidently,   combinatorial games  In the form of mathematical  prob- 

lems made  their  first  appearance at  the beginning of  the seventeenth  centurv. 

The      well-known "Problemes Plalsants et Delectables, qul  ses font par  les 

Nombres",  published by Bachet de Mezlrlac  In 1612 /I/,  contains a problem of 

the following sort:     Two players alternately name numbers  from one  to ten, 

and the player who arrives first at 100 with the numbers added up wins. 

The solution of  this game causes no  troubles:    A player  can be sure 

of winning If he succeeds In making the sum of all numbers named  equal  to 

100 - 11a.    Accordingly, after each step of his opponent,  he has  to choose a 

number being a complement  to 11. As a matter of fact, by naming number ore 

at his first step,  the beginning player  can force his conquest.  This game can 

obviously be Interpreted as a process of alternately taking away one to ten 

objects from a basket originally containing  100 objects. 

The Chinese game "Fan-Tan"  seems  to be more complicated.     In this 

game,  the players have to cope with three baskets filled with certain ob- 

jects,  and at  each move the respective player has  to choose an arbitrary 

number of objects from an arbitrary basket.     The player who takes  the  last 

object wins.    The complete theory of this game has been published  in 1902 

by C.L.   Bouton 111. 

This type of game in Its more general form is called "Nlm",  and 

It Is of  the following structure:    There are given n baskets with certain 

objects.    Each of both players, who are alternately coming  In,  chouses p bas- 

kets and from each of  these he takes an arbitrary number of objects.    The 

player taking the last object wins.    An analysis of  this game has been given 
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by E.H.Moore In 1909 /I/. 

Moore's arguments utilize In fact the following consideration: It 

can be shown that for every game of the type "Nim" it is possible to obtain 

in an obvious way some class of positions possessing the so-called properties 

of external and Internal stability. The first property means that whatever 

the position not belonging to the class investigated is, there exists a step 

leading from it to a position in our class. The second property consists in 

fact that each move made in a position of this class leads outside. In this 

way, if the class described contains the winning position ( and in games of 

"Nim" the player who takes the last objects wins) , each position in this 

class can be regarded as winning. 

In particular, in Bachet de Meziriac's game those positions in which 

it was possible to represent the sum of chosen numbers in the form 100 - 11a 

turned out to be the class of winning positions. 

The concept of dual stability introduced above has proved extremely 

fruitful In game theory.  We will come back to this concept repeatedly later 

on. 

2.  With the Increasing combinatorial complexity of a game, plainly 

determining the set of al] winning positions (in the sense described above, 

i.e., possessing the property of dual stability) becomes more and more difficult. 

For a game like chess this turns out to be practically impossible. Therefore, 

in the mathematical analysis of comblnatorially complicated games, efforts 

shift from the search for the set of winning positions to proving the existence 

of such  sets. 
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This way has been chosen by E.Zermelo.  In 1912, at the Fifth 

International Congress of Mathematicians, he presented his paper "Über eine 

Anwendung der Mengenlehre auf die Theorie des Schachspiels" /I/, in which 

he proposed the following approach to conbinatorial games. 

Consider a game with a finite set of positions (Eermelo, for the sake 

of security, speaks only of chess, but he has all similar games In extensive 

form in mind). Positions that differ only with respect to which player's 

turn it is to move are regarded as different. 

For each position q we introduce a set U (q) of such "end games" where 

White can force his victory in not more than r moves. Here the possibility 

of forcing a victory is to be understood in the following sense. 

Let some end game C = (q, q , q«, ... ) belong to the set U (q) , q, 

being some position in ? where it is Black's turn to move, and he moves from 

q. to the position q,+1. Let us consider another position, q^+i» which, 

according to the rules, can also be reached by Black from (K . Then among 

the end games in U (q) an end game ?' can be found that starts with the 

positions q, q  q , q'  . The possibility for White to force his 
1 A        A-i 

victory from q  In r steps means  that U   (q)  !* 0   . 

If the total number of all possible positions  in the game equals  t, 

then from White's possibility in position q to force his conquest  in a finite 

number of moves follows an analogous possibility of victory  in not more 

than t moves.     Thus White's possibility tr win In position q  is equivalent 

to U (q)   = Ut (q)   t 0  . 

In a similar way,   the set    V (q) Ü5 U (q)  of  end games beginning in q. 
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where White is able to force a tie, Is determined. A tie is attainable 

for Vhite if V (q) ^ 0 . If V (q) = 0 , then in position q Black forces the 

victory. 

By means of this argument Zermelo showed that in each position q one 

of three possibilities exists: Either White can guarantee himself the 

victory (if U (q) ^ 0 ) , or he can force a tie but not a victory (I.e., 

Black can guarantee himself a tie but not the victory, this happens, when 

U (q) =0 , but V(q) 7* 0) , or the victory can be forced by Black (if V (q) = 0 ) 

The same question may also be asked for the starting position. As Zermelo 

has pointed out, an answer to this question would deprive chess completely 

of its game character. 

3. In 1925 Steinhaus published his article "A Definition for a Theory 

of Games and Pursuit" which for years had been known only to a small circle 

until it appeared in 1960 in an English translation (under the above title). 

In this article Steinhaus Introduced (for the sake of security again applied 

to chess) the concept of a "method of playing" as a "list of all eventualities 

with a preferable move for each of them". The best strategy is regarded as 

that method which minimizes the maximum number of steps one's adversary can 

persevere. In fact, the ideas of a strategy and a raaximin-principle are 

already contained in these definitions. 

In his paper, Steinhaus examined neither the questions of existence 

nor of finding the best strategies referring them to another class of problems 

(according to the general hierarchy of problems given at the beginning of his 

paper). 



-12- 

4.  In Zermelo's considerations, the transition from forcing the 

victory in a finite number of steps to forcing the victory in a bounded 

number of moves has not been duly proven. In 1927, D. König /!/ has given 

a precise proof of this proposition on the basis of one of his theorems from 

the theory of infinite graphs.  The possibility of applying this theorem to 

games has been pointed out to him by J. von Neumann.  It was apparently in 

that paper that J. von  eumann's name was mentioned for the first time in 

connection with games.  By the way, J. von Neumann had already shown his 

Interest In problems of games earlier. More details about that will be given 

In 1.4.1. 

For the sake of fairness It must be noted that Zermelo, when he became 

acquainted with K'onlg's paper before its publication, offered his own 

independent, extremely brief and elegant version of the lacking proof described 

by König In the appendix to his article /I/. According to König, the proof 

based on this idea had been known also to J. von Neumann. 

5. All in all, Konlg's proof does not rely on the condition of 

flniteness of the number of possible positons in the game, but only on the 

weaker condition of flniteness of the number of positions attainable in one 

move from a given position and thereby in n moves for an arbitrarily fixed 

natural n . As an example for such a game he has used a game played with 

ordinary chessmen on an unbounded board. 

The consequent step in this direction has been made by L. Kalmar who 

dropped the condition of flniteness of the number of positions attainable 

from a given position in one move. 
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6. The formalization of the argumentation referring to the dual 

stability of winning sets in two-person games in extensive form with alter- 

nating moves has been carried out by P. Grundy /I,2/. A pair of positions 

in a game that differ only with respect to which player's turn it is to move 

Is called a diagram. Let us denote the set of all possible diagrams in a 

game by X.  If we represent each diagram by a point and connect it by 

directed arcs with all those diagrams which can be reached in one step from 

the given one, then we obtain an orientated graph, denoted by ( F, X). Let 

us attach the payoff of a player to the end diagrams of this graph (i.e., those 

diagrams from which one cannot pass to other diagrams). 

Let each player win (we limit ourselves to the description of a case 

that may be called symmetric) in diagrams of the set K at his move, and 

in diagrams of the set L at his opponent's move. This determines a game 

denoted by ( T, X, K, L). 

The function g, defined on the set of all diagrams whose values are 

non-negative integers, is called Grundy function if it possesses the following 

properties: 

0 for xe L, 

g(x)  = \   1 for XE K, 

the smallest non-negative integer *) 
different from g (y) where y e ^x- 

Let  there exist a Grundy function for a given game ( T, X, K, L)• For 

this, as M. Richardson /1,2/ has subsequently .shown, it is sufficient that 

*)    Translator's note: The author speaks here of "natural number", but 
from the following argumentation obviously fellows that he really 
means "non-negative Integer". 



-14- 

in the graph ( T,  X) both the set T x and the set of all yeX, for which 

xeiy, are finite, for any XGX, and likewise that this graph does not contain 

contours of odd length. 

The set of those diagrams where the Grundy function takes on the value 

zero possesses the property of dual stability. 

Let us then assume that some player (say, the first) succeeds in 

attaining by one of his moves a diagram a, for which g (a) = 0.  Now the 

second player chooses a diagram beFa. But, according to the definition 

of a Grundy function, the value g (a) being equal to zero differs from all 

numbers g (z)  for zeFa.  In particular,  g (b) ^ 0 must hold. 

Vie see that it is not possible to perform a transition within the 

set of zero-Grundy function *) in one step. This property of the set is 

called its internal stability. 

Let now the first player be in position b such that g(b) / 0. He 

chooses some celb.  If among the diagrams Fb no diagram z, for which, g (z) =0 

could be found, then g (b) = 0 would follow, which, however, does not hold. 

Consequently, there exists a  celb such that g (c) • 0. 

This means that it is always possible to pass from outside the set of 

zero-Grundy function into this set by one step. This property of the set is 

called its external stability. 

Thus, the first player once being in the set of zero-Grundy function 

has the possibility not to leave this set.  Thereby he either carries the game 

into the set L or prevents it from terminating. 

*)     I.e., the set of diagrams on which the Grundy function takes on the 
value zero (translator's note). 
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froin July 29, 1654) the solution to de Mere's problem was discussed. It 

is regarded, according to a general tradition, as the origin of the math- 

ematicel theory of probability. About this time (1657) Huygens finished his 

treatuse "On Calcuation in Games of Hazard" /I/, where he writes among other 

things: "...when studying the subject carefully the reader will observe 

that he is dealing not only with a game, but there are given the fundamentals 

of a deep and extremely interesting theory." Only fourteen years later, 

however, Jean deVitte applied the probability calculus to the calculation of 

the values of life interests, and from then on probability theory as a branch 

of mathematics has left its association with games and has begun an Independent 

existence. As to the role of hazard games in the rise of probability theory 

se Malstrov's paper /I/. 

3. If the player's aim in a combinatorial game is winning it and 

optimal actions or strategies of the player are regarded to be those which 

assure him this win, then under conditions of a hazard game no skill (that 

does not transgress the rules of the game) can guarantee the player the 

desired outcome which depends besides other factors also on chance.  For 

that reason, the player cannot by merely choosing a strategy, obtain a fixed 

amount. Here the purpose seems to be much more complicated. 

The tendency to maximize the payoff which he expects to receive seems 

most natural for the player. The quantitative evaluation of the hopes of the 

players in several games (actually under conditions of an unfinished match 

consisting of various plays) had already been subject of a controversy between 

Cardano and Lucca Paccloll in the sixteenth century (see Zeuthen 111,  p.168), 

HI. i   i ■ ■! IT III!  
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and a century later in Pascal's above mentioned letter It had been taken 

as a basis for a "fair" division of stakes not payed out. Huygens arrived 

independently of Pascal and Fermat at a similar result expressed in a much 

more general form which allows us to speak of the mathematical expectation. 

Thus the maximization of the mathematical expectation of the payoff 

turned out to be the leading principle for the participant in a game of 

hazard.  Later on, Laplace /I/ Included this principle in his collection 

of "fundamental principles of the calculus of probabilities" (principle VIII) 

and formulated it as follows: "If an advantage depends on many events, then 

by taking the sum of the products of the probabilities of each event that is 

randomly connected with its occurrence one obtains this advantage." Laplace 

declared that this advantage means the mathematical expectation. On these 

grounds the idea of a harmless game as a game where the mathematical expectation 

of the gains of every player is zero at the beginning has emerged. 

If one chooses to deal with games of hazard from the point of view of 

maximizing the mathematical expectation of gains, they can in principle be 

exhaustively analyzed by means of probability theory.  The difficulties one 

may meet will be of a purely technical character. We will therefore not dwell 

upon further mathematical discussions of hazard games based on this principle. 

4. An uncritical application of the principle of maximization of the 

mathematical expectation may lead to paradoxical results. The first example 

of auch a paradox has been given by Nikolaus Bernoulli and has been named 

"St. Petersburg Paradox". It is of the following kind. 

Two players flip a coin till "tails" turns up.  If "tails" appears for 
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the first time at the n1^1 throw the first player receives from the second 

2 units. The mathematical expectation of the payoff for the first player 

Is Infinite. Therefore, whatever is the amount of Ms  original stake, the 

game will never be "harmless" but advantageous for hlra. This conclusion is, 

however, not in accord with "common sense", for the second player's capital 

is practically limited and even through adjourned plays the first player 

will not be able to get his due gain.  Besides, the first player's "capability 

of appropriation" is also limited. Therefore, at sufficiently Targe n a 
n n n+1 

gain of 2  with probability (1/2)  is prefe. ible to a gain of 2   with 

rrt-1 
probability  (1/2)   :  Both gains are "practically equally huge", but the 

probability of the first is greater than that of the second. 

The two objections quoted are essentially different. The first is more 

formal and can be just as formally abandoned If one identifies potential and 

actual realizabllity. 

The second objection is notwithstanding its apparent deliberations 

more substantial: It reflects the circumstance that an -tncrease in utility 

arising from an Increase in the monetary gain does not only depend on this 

increase, but also on the absolute size of the gain. 

Daniel Bernculli (Kikolaus Bernoulli's nephew) assumed that the utility 

of an increase dx in the gain were directly proportional to dx and 

Indirectly proportional to x. As it can easily be seen this is equivalent 

to the statement that the utility of the monetary gain be proportional to its 

logarithm. From this follows that gaining a certain amount of utility and 

losing it afterwards is just as profitable for the player as losing and then 

regaining it, for in both cases he loses a smaller part of his capital than he 

obtains. This statement is also to some extent paradoxical. In any case, it 

 ■  I, i   -- -—^—^-*M—^ 
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ls possible to find evident arguments In favor of and against it. 

Measuring utility on such a logarithmic scale leads to the replacement 

of the mathematical expectation by the "moral expectation" which should be 

better called "psychological expectation". Such a measurement of utility is 

also included by Laplace in his principles of probability calculus (principle 

X), who qualifies it, however, only as a principle "that might be useful in 

many cases". 

5.  The theory of hazard games has been developed in its most general 

and perfect form by L. Dubins and L. Savage in their monograph /I/. They 

have formulated the fundamental problem of the theory as that one of finding 

the optimal behavior of a player, who, at the beginning of a game, can dispose 

of a certain sum and possesses a given utility function. 

The most essential point is that classical probability distributions 

(i.e., countably additive probabilities) have turned out to be inadequate for 

a complete description of phenomena arising in games of hazard. For that 

reason Dubins and Savage have found it necessary to develop a more general 

theory - finitely additive discrete stochastic processes. 

In the following we will see that finitely additive probability 

distributions are important for games of strategy too. 

§4: Games of Strategy. E. Borel's contribution 

1.  In contrast to both the combinatorial and chance aspects of games 

whose mathematical development roots in the remoteness of centuries, the 

strategic problems of games have a considerably shorter history. 

-" -■■ Mr''    -  
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The first mathematical discussion of the strategic aspect of games 

can be found In J. Bertrand's lectures on probability theory /!/ where the 

question about the advisability of "drawing for five'' in Baccarat had been 

Investigated.  Bertrand's reasoning is to a considerable degree psychological 

in character: He evaluates the expediency for a punter to draw in dependence 

on the banker's knowledge about the punter's usual behavior. 

VJhat Bertrand has said is not to be valued as properly raising a 

mathematical problem but only as pointing out its possibility. 

2. In 1921 a short, but absolutely substantial note by E. Borel on 

"The Theory of Play and Integral Equations With Skew-symmetric Kernels" III 

appeared. In this paper fundamental concepts concerning games of strategy 

(strictly speaking, those games which later on have been termed symmetric 

antagonistic games) have been formulated for the first time. 

A strategy has been defined as a system of rules determining exactly 

the actions of a plyaer in any possible situation. Here the game has been 

looked upon as a hazard game, and the choice of strategies c and c. by the 

two players A and B, respectively, leads to player A's win with probability 

1/2 + ct. (from the symmetry of the game follows that ct.^ ■ ~ ^i an^ 

a ii - 0) . 

Borel has also expressed the idea of utilizing the domination of 

strategies: If  co, <  0 tor  all values of h, then strategy Ci  can be called 

"bad" and excluded from further considerations. 

On the contrary, if for all values of h  a .. > n holds, then c  can 
ih = i 

be reckoned as the "better" strategy. 
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In case where bad strategies have been abandoned and better strategies 

are lacking one has to attempt to develop a system of play based on a 

alternation of strategies which does not depend on psychological considerations 

but on the rules of the game. Borel has considered the unique possibility 

to be the choice of strategy c,  by player A with a certain probability p . 
k k 

Analogously,  player  B will select his strategy    c      with probability    q. . 
IC K 

Thus,  Borel for the first time stated  the expediency of using mixed strategies. 

The choice of such mixed strategies results in a probability of winning 

for player A of 

Z     Z   (1/2 +    a    )   p.q. = 1/2 + a 
1     j 3 

It is not difficult  to see that  is the number of each player's strategies 

is  three,  then 

*!    P2    P3 

a qx   q,   q-, 

a23 a31 ci12 

It is further clear  that  in case of  the absence of "bad" and "better" 

strategies the numbers      a9T»      ^i»    an^    ^i 9 have equal signs,  and  that  it 

is possible to find a system of probabilities    p,,  p„, p«,    for which    a   will 

be zero Independent of what  the system of probabilities    q,,  q2>  $2 ^s going 

to be. 

Thus,  using current  language,   Borel has proved the theorem of  the 

existence of optimal strategies   (also called miniraax-theorcm)   for symmetric 

matrix games of dimension  3x3. 

Obviously,   this proof depends on rather concrete deliberations having 
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to do with the fact that  the number of pure, non-randomized  strategies for 

each player  equals three.     Borel has been In doubt about the possibility of 

extending this result to the case of an arbitrary number of  strategies,  and 

has even been Inclined to give a negative answer for the general case.    He 

conjectured  that "In general, whatever  the p's may be,   it will be possible 

to choose the q's In such a manner that    a    has any sign determined  In advance, 

However, when making this conjecture Borel has employed an argument 

that shows his deep understanding of  strategic situations leading to mixed 

strategies.    He writes:    "Since this  Is the situation, whatever variety Is 

Introduced by    A    into his play,  once this variety is defined,   it will be 

enough for     B    to know It In order that he may vary his play  In such a manner 

as to have an advantage over    A.    The reciprocal is also true, whence we 

should conclude that the calculation of probabilities can serve only to 

facilitate elimination of bad manners of playing and the calculation of    a    ; 

for the rest,  the art of play depends on psychology and not on mathematics." 

Only now are we able to truly appreciate the reasoning.     We will come 

back to this question later on. 

BesldeS| Borel has extended the problem to the case of continuous 

strategy sets of  the players.    Here discrete probabilities are changing to 

probability distributions and sums to Stleltjes Integrals.    As an example 

he takes a curious problem which Is to some extent a prototype of the contem- 

porary problems of distribution of Infinitely dlvlsable resources:    Each of 

the players    A    and B   chooses three numbers adding up to unity, 

x + y + z » lf 

xl + yl ■f zl * 1' 
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and orders them in a certain manner;    A wins  If 

b1 - x)    (y1   - y)   (z1 - z)    >    0 

(for another  Interpretation of  this game see II.5.3). 

At  the end of  his paper  Borel points out that the probabilistic and 

analytical problems   that may arise in the art of military strategy,  or  in 

economics and  financial affairs, are not without similarity to the game 

problems  examined. 

Thus,   in this  first paper dedicated  to games of strategy,   Borel has 

raised rather   than solved the problem,  but he has done it in an entirely 

profound way,   even from the present point of view. 

3.     In a further paper /2/ published  in 1924  Borel returned to the 

examination of  strategic games.    In this article he has given an exhaustive 

analysis of symmetric matrix games with three and rive strategies for each 

player.    Incidentally,   in one of  the footnotes  Borel has pointed out the 

possibility of  symmetrlzation of an arbitrary game based on the players' 

participation  in two plays of such a game and  their performance of different 

roles  in these plays   (a precise description of  this symmetrlzation has been 

given by Erown and von Neumann    1950 /I/) . 

We notice,  at first glance,  another somewhat strange phenomenon similar 

to that we have already observed  in the seventeenth century when Pascal and 

Fermat had  in fact  employed the formula for absolute probabilities,   i.e.,   the 

mathematical expectation of conditional probabilities, but not  the mathematical 

expectation of   the gain as such.    The latter had been given by Huygens.    Similarly, 

Borel In his 1921 note has not dealt with numerical gains, but with averaging 
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probabilltles of winning. The mathematical expectation of the gain itself 

can be found only in his 192A paper. 

This can be partly explained by the fact that tlv formula for absolute 

probabilities replaces certain probabilities by another probability. The 

mathematical expectation of gains, however, although measured in the same 

units as the gains themselves, is essentially not of the same nature. In 

order to be able to intei!>ret it as a gain, additional stipulations that are 

not always evident and even not always natural are necessary. Full clarity 

about this problem has been achieved only after establishing an axiomatic 

theory of utility, whl^h will be touched upon in II. 

The remainder of Borel's 1924 paper as well as his further publications 

on this topic do not contain anything new compared to his note of 1921. 

4. In 1953 English translations of Borel's contributions /I, 2, 3, 4/ 

appeared together with a short preface by M. Frechet 111  entitled "Emile Borel, 

initiator of the theory of psychological games and its applications", in 

Econometrica. As a true mathematician, Frechet gives the definition of the 

term "Initiator", a term he uses, quoting Legouve:  "I call initiators those 

privileged beings, those magnetic creatures who make vibrate in us cords until 

then mute, those wakers of soul." 

But just in this sense Borel cannot be considered an initiator of the 

theory of "psychological" (strategic) games. His papers on game theory in the 

'twenties have wakened nobody's soul, nor have they found any responses in 

publications. The title of an initiator of game theory could be legitimately 

awarded to Borel even if he had wakened the soul of "onlv" a J. von Neumann. 
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But as can be seen frcm J. von Neumann's footnote to his paper /I/, he 

had learned of Borel's note only while his paper had been put Into Its final 

form. 

Borel's name does not need any titles.  But to characterize his place 

In the history of game theory in one word it seems most appropriate to use 

the term "discoverer", who came, saw, and ... that's all.  Borel has seen a 

lot, however. 

§5:  On the Theory of Games of Strategy 

1.  In 1926 J. von Neumann dealt with problems concerning games*). 

He discussed them with D. König, and on Pecember 7, on the eve of his twenty- 

third birthday he presented a report on gaire theory to the Gottlngen Mathematical 

Society.  One and a half years later von Neumann's paper "Zur Theorie der 

Gesellschaftsspiele" has been published In the 100th volume of the "Mathemat- 

ische Annalen".  This paper contains the most Important Ideas of the present 

theory of games and its fundamental results. 

Von Neumann himself has formulated the purpose of his article as an 

attempt to give an answer to the following question:  " n players S,, S-, 

..., 9n are playing a given game of strategy, G. How must one of the part- 

icipants, S , play in order to achieve a most advantageous result?". Of course, 

he has not mentioned all possible practical interpretations of this question, 

but he has noted that "jhere is hardly a situation in dally life Into which 

this problem does not enter".  Yet, the meaning of this question is not 

unambiguous in J. von Neumann's opinion. 

*) See the note on p. 13 in volume 171 of collected paper, 
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In fact,  the principal achievement of  this paper is the clear math- 

ematical formulation of  this question that has not only allowed us  to answer 

it, but also to show the specific "calculus" for this kind of question. 

The paper begins with the definition of a game of strategy with    n 

players   S S      as a specification of a set of events   ("steps",   "moves") 

carried out either by the players or by chance.     Thereby the game C,  is described 

as a zero-sum extensive game   (i.e.,  for an    arbitrary outcome of  the game  the 

sum of payoffs  to all players equals zero) .    Such games are also called 

antagonistic games. 

Von Neumann has further found out that actually the strategies of  the 

players are systems of possible actions  in several states of Information.     This 

makes it possible to restrict oneself,   in solving fundamental theoretical 

problems, to the normal form of the game where the strategies of a player are 

examined without  taking into account their origin,   i.e.  as elements of an 

abstract set of strategies. 

Cases where the number    n    of participants  in a game equals    0    or 

1    are not of much interest.    The case of    n ■ 2    is not only the simplest 

of the non-trivial cases,  but, as it will turn out in the following,  is of 

principal importance for    the entire theory.    Hence, von Neumann proceeded 

to a detailed investigation of two-person zero-sum games whose rules he has 

formulated as follows: 

"The players    S,, S?    choose arbitrary numbers among the numbers 1, 

2,   ...   Zj, and 1,  2,   ...^2    respectively,  each one without knowing the 

choice of the other.    After having chosen the numbers x and y respectively, 

they receive the sume    g6c,y)   and    -g(x,y)   respectively.    g(x,y)  may be any 
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functlon (defined for x = 1,  2, ... 2; y= 1, 2, ...£■)." 

After this there follow arguments which In our time seem like cliches 

or even primitive, but It Is them which constitute the core of game theory 

separating It from other branches of mathematics. There Is, for example, the 

argument that player S^ for an arbitrary choice x receives a payoff not 

less that mln g(x,y) and has therefore to choose his x such as to maximize 
y 

this minimum, I.e., he guarantees himsilf a sum of max mln g (x,y) . 
x  y 

Player S2 need not give S,  an amount greater that 

mln max g (x,y) . 
y     x 

The equality 

max mln g (x,y) = mln max g (x,y) 
x  y y  x 

frees  the optlraallty of the players'  actions of any psychological touch. 

Those values of x and y In this  equality where the respective outer extrema 

are attained,  obviously are the optimal strategies of players    S,  and Sn. 

The parts of  this equality can generally be Interpreted as the sum player S. 

is sure  to obtain, but which Is also the most he can win if his opponent plays 

correctly.     This sum is called  the valup of the game. 

Von Neumann has attempted  to overcome the difficulty that this equality 

is not always  fulfilled by  the same method as  Borel a few years before him, 

i.e.,  by Introducing mixed strategies    £    = £. £;_ )   and n =   Oli nri) 

But  Borel has expressed  the  logical aim In the form of a rather complicated 

assertatlon   (see I,A.2).     Von Neumann has added  to  this   the equality 
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max min h (C,n) ■ min max h (C,n) 
5 n       n ^ 

(i) 

where h( ?,r) ) is a bilinear form: 

Zl I2 
h(?fn) 'ii    g(p,q) ?n na . 

p=l q=l        p M 

Thus von Neumann has established the existence of a value and optimal 

(possibly mixed)   strategies for the players of an arbitrary finite antagonistic 

game.    Thereby,  he has dispelled  Borel's doubts and refuted  the conjecture 

to which Borel's  scepticism tended. 

The proof of  the equality   (1),given by von Neumann,  is by all means 

complicated and not constructive.    It is based on Brouwer's fixed point 

theorem.    This is  the more surprising as the proposition to be proved had 

of course been put sometimes before in terms of convex sets   Ollnkowskl /I/) 

and linear inequalities   (gtiemke /I/).    However,   ten years had yet to pass 

until Ville /I/ revealed  the connection between this game problem and  the 

theory of convex sets and has given an elementary proof of the minimax 

equality. 

2.    After the principal basis of  the behavior of participants  in an 

antagonistic game   (i.e.,  a two-person zero-sum game)    appeared to be perfectly 

clear, von Neumann went on to the analysis of games with more  than 2 partic- 

ipants.     But already.  In the case of  three-person games   ( and even for two- 

person nön-zero-sum games),  additional difficulties arose.    Not  trying to 

overcome them   (incidentally we note that until the present day, no one has 

succeeded in establishing an exhaustive theory of  three-person games) , 
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von Nuewann chose    to Investigate the possible ways of reduction of many- 

person games to antagonistic games.    He has examined In detail these reductions 

for  the case    n = 3 and has outlined an analogous program for games with more 

than three players.     Von Neumann's Idea consists  In the following: 

Let us consider a three-person zero-sum game where the players S.., S2, 

and S2 choosing Independently of  each other strategies x = 1,   ...,    £, ,      y = 1, 

...»    £2»  an^ z = 1»   •••»  ^3    respectively, receive the payoffs   gj(x,y,z), 

g2(x,y,z),  and g., (!c,y,z)   where Identically 

&1 + ^2 + &3 E 0• 

We consider all possible antagonistic games obtained as the result of 

an association of any two arbitrary players against the third   (obviously,  in 

the given case there are  three such antagonistic games).     We determine  the 

values of  these games: 

max min 

max min 

max min 

Jl    "2    ^3 
Z      I      I      [g! (p^r) + g2 (p^r) ]    C      T1r    =«1,2 

p=l q=l r=l KM 

^   z2   z3 
Z      Z Z [g, (p^r) + g3 ^1q1r) ]     C %    - M 

p=l q=l r=l                                                          P ^ 1'3 

h   h h 
Z      l Z [g2 (p1q1r)  + g3(p1q1r')]     Z ^ = ^2,3 

Here,   the   c      form a system of probabilities on the set of pairs   (p,q) ; 

analogous distributions are given by  ?     and     CLr   .     It is not difficult to 

show that 

M1.2+M1.3    +    M2.3     -   0 (2) 

tmtm 
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The goal of each player  is to receive the largest possible payoff. 

What claim,   say of player    S,,     may be considered realizable?    Let us assume 

that S-  makes efforts to obtain W-.    His adversaries united with each other 

give him not more  than    -M      .     That means his claim Is realizable  If 

w1    <    -M2)3  . (3) 

Otherwise It would be necessary for player S^   to form a coalition with 

one of his partners In the game. 

If S,   having In view to gain    w ,  gets    S      as an ally,   then there 

remains    M,   2 -Wi     for S_, and if    S-^ Is in coalition with S3,   then S-, obtains 

Ml 3 "^l*    This means that s2 ancl S3  "together" receive Mi 2 + Ml 3 "2wi'     ^lt> 

by rejecting S,'s offer to coalesce and forming a coalition among themselves 

they can get Mj 3'    ^ 

M2,3 >M1,2 +M1.3 "^    ' 

then there is both for S- and So no sense in responding  to S,'s call who thus 

will be left in Isolation.    Consequently,   in order to find an ally,  S    has to 

moderate his claim: 

w^ 1/2(M1>2+M1>3    -M2)3)     =    ^ 

(which in view of   (2)   Is less restrictive than   (3)  ) .    Analogously, we find 

that the payoffs w- and w. desired by players Sj and S3 respectively,  are 

correspondingly restricted by the  Inequalities 

W2 < V2(M1)2+M2>3-M1>3)   =w2   , 

w3  ^1/2(\3+M2.3-Ml,2)   'S   ' 

1 ■■ ■'  ■■"■ - 
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But at the same time the claims w , W2, and w- are realizable for any 

pair of players: A coalition made up from a pair of players is able to satisfy 

the demands of its members. Of course, the player remaining outside the 

coalition thereby "robs" himself completely. 

3. For an arbitrary number n of playersfsimilar arguments can be put 

forth. In particular, the arbitrary splitting of the whole set of players into 

two coalitions U   V ^  and V 1, ..., ^ n_k opposing each other, determines 

for any coalition y-^, ..., U ^ an antagonistic game and its value Mr     , 
l»»'^k^ 

As can easily be seen, 

1) M
{}

!= 0 ; 

2) M(uJ,..,yk}
+ ^.....v^}"0 

if the set-theoretical sum of the coalitions y,, ..., ]l,   and V , ...,v  . 

makes up the entire set of players: 

3>  M /        1 + Mr , < Mr,      ,, v.     u 1 

if the coalitions y ^  l-'k an^ H« • • • > ve   are disjoint subsets. 

The p opertles of the magnitude M as a function of coalitions are at 

the same time the essential properties of the original game. Later on this 

function has been given the name characteristic, function and has been examined 

in many papers. 

The approach described reminds us to some extent of the theory of 

correlation of random variables, where the study of joint distributions of 

many random variables is confined to finding and comparing the correlation 

coefficients of any possible pair of random variable«. In the role it plays 

in the theory of games, the characteristic function introduced above reminds 
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us of the correlation function. Of course, this similarity Is of a purely 

logical, but not formal nature. 

4.  We see that von Neumann's paper contains a lot of fundamental ideas 

of the current theory of games of strategy, and the history of game theory 

begins with It. Hence, it is Justifiable to call von Neumann the founder of 

game theory. Yet, during the immediately following years, von Neumann's 

article found neither responses nor continuations in the contemporary mathe- 

matical literature. The sole exception is the a+L-eady mentioned paper by 

Vllle /I/ containing the simplified proof of the mlnlmax-theorem and its 

extension to games with infinite sets of strategies obta-'ned on the basis of 

an inquiry Into names of the Poker type. In particulai-, in that paper /I/, 

Vllle proved that any infinite antagonistic game, where the set of strategies 

of each player is a unit segment (these games are now called g^mes on the unit 

square) and the payoff function is continuous, has a value in mixed strategies. 

By the way, the example of a game (with an infinite set of strategies, of course,) 

having no value (in mixed strategies) has already been given In this paper. Thus 

the question formerly raised by Borel (see I.A.2), concerning the possible lim- 

itations of the probability approach to games of strategy and the necessity of 

a psychological approach, has arisen again. 

Consequently, when speaking about the 'tvpnties and 'thirties, von 

Neumann himself cannot be regarded the "initiator" of game theory (in the 

Legouve-Frechet terminology). 

It may be noted that practice (especially in planning of experiments) 

has revealed, obviously Independently of von Neumann's game theoretical Ideas, 
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the advisability of employing mixed strategies. Analyzing the game "Le Her", 

R. A. Fisher /I/ has pointed out the rationality of a random choice of one of 

two procedures for each player and has even given a detailed calculation of 

the respective probabilities. 

5. At the end of the 'thirties von Neumann occupied himself anew with 

problems of game theory, but this time together with the economist 0. Morgenstern. 

As a result of their Inquiry into the theory of games, they have determined, if 

not the immediate direction of applications, then in any case, a kind of "social 

order": Game theory has become ripe for its elaboration as a mathematical 

apparatus for the description and analysis of economic phenomena. The fruit 

of a work of many years has been the monograph Theory of Games and Economic 

ßehavlor. 
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Chapter  II 

THEORY  OF GAMES  AND  ECONOMIC 

BEHAVI OR 

Our Intention is not to give a brief exposition of the contents of the 

monograph or any of its passages. There is also no need for "literary 

critical" considerations concerning what, in particular, the authors had in 

view when organizing their scientific material in that and no other way, not 

in what inspired the specific composition of the book and its sections.  The 

authors themselves have described, and they have done this in considerable 

detail, every logical step in their mathematical reasoning and have discussed 

thoroughly the necessity to expose the problems in the order eventually 

adopted. 

At the same time, it seems to be advisable to make some remarks of 

game theoretical as well as generally methodological character.  Besides, 

it appears natural to point to those results obtained later which immed- 

iately refer to concrete problems analyzed in the monograph. 

For convenient  all these remarks are arranged in the same order as 

the passages of the monograph they are referring to. They are grouped Into 

paragraphs that correspond to the chapters of the monograph. 
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§1: Formulation of the Economic Problem 

1. The book Is called "Theory of Games and Economic Behavior" and 

Its authors begin by pointing out their purpose - "to present a discussion 

of some fundamental questions of economic theory". Thus the Impression may 

arise that this book Is dedicated to economics and particularly to the 

applications of game theoretic methods in economics. Really, however, the 

contents of the monograph are purely mathematical. 

The authors have realized that the formally described results of 

mathematical conclusions may, despite the perfect strictness of their 

exposition, appear by no means Indisputable from the point of view of those 

readers who are not familiar with the mathematical apparatus used. Therefore, 

everywhere the possibility occurred they have accompanied the mathematical 

formulations by purely verbal descriptions. 

The economic inclination of the book manifests Itself In only three 

aspects that are not decisive, but nevertheless deserve some explanation. 

First, the starting point of the authors'  inquiry has been the 

discussion of some elementary economic phenomena like isolated exchange acts, 

aspects of competition, equilibrium etc. Here they confine themselves to a 

detached consideration of those phenomena, ignoring their general economic 

and social features, which thus lose the specific quality that transforms 

them from immediately observed facts into economic phenomena. From the point 

of view of economic science, this is Inadmissable; but mathematically - 

completely legitimate, since it facilitates the construction of a formal 

theory taking into accornt only those features of phenomena that are preserved 

■ i—n ■ ■" - 
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after a certain schematlzation has been carried out. 

Secondly, an economic terminology has not Infrequently been employed 

In the book: There occur terms like i^oney, monopoly, duopoly, bilateral 

iiionopoly, etc. As to monopolies, duopolies etc., they are not to be under- 

stood as concepts from bourgeois political economy, and even not as terms 

pointing to some phenomena which are In fact or at least apparently observable 

In the capitalist economy. In the book these terms denote only certain 

variants of collision of opposing Interests. To what extent these variants 

correspond to actual collisions of economic Interests under capitalistic 

conditions has not been investigated by the authors of the book. 

Somewhat more complicated is the question of money. By money the 

authors mean, as they put it on page 8, "a single monetary commodity" 

supposed to be "unrestrictedly divisible and substltutable, freely trans- 

ferable and identical", even In the quantitative sense, with whatever 

"satisfaction" or "utility" is desired by each participant. 

It Is clear that this axlomatlcally defined commodity does not possess 

all properties of money. It is also obvious that money does not always, or 

completely, possess the properties postulated by the definition. At the same 

time, this commodity is much more "similar" to money than to something else, 

and, for that reason, calling it money is more convenient than using any 

other name. Nevertheless, the term "money" is used by the authors only in 

concrete Illustrative examples. In all their theoretical discussions they 

prefer the term "utility". 

Thirdly, the authors' eventual goal, which goes beyond the scope of 

their book, is indeed the economic applications of the mathematical apparatus 
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developed by them.  But of what nature these applications will actually 

turn out to be and to what economic conclusions they will lead, the authors 

have not shown anywhere in the book and have not Intended to do so. 

As a matter of fact, the theory of games has various economic (as well 

as other) applications. In this paper, however, we choose not to deal with 

problems of application. 

2.  The notion of utility, as a quantitatively measurable and unres- 

tlctedly divisible object, is one of the most important notions in game theory. 

The existence of such a utility could be postulated from the very beginning 

as an axiom which is then subjected to scrutiny in every single case. However, 

on the one hand, the assertion of the existence of a utility with the properties 

mentioned is not sufficiently unquestionable. Therefore, von Neumann and 

Morgenstern prefer to base the requirements that utility must meet on several 

more elementary axioms. 

Here we may point to the peculiar axiomatic treatment of most of the 

fundamental concepts in game theory.  Usually, in formal mathematical theories, 

axioms are chosen not so much for their naturalness, simplicity, and originality 

as for deductive reasons:  independence, consistency, possible completeness, 

transparency, etc.  Roughly speaking, this arcounts for the small number of 

axioms and the large number of theorems in traditional axiomatic theories. 

In game theory, matters are essentially different. Statements about 

the existence of necessary objects (Including, anticipating something, also 

principles of rational behavior) presupposed "axiomatically" do not always 

look sufficiently probable (the more so not always absolutely probable) and 

■ ■■ ■ - 
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are therefore not accepted by everybody.  For that reason, the problem arises 

of formulating "more primitive", "more probable" axioms, and on the basis of 

them proving certain game theoretic principles originally regarded as elementary, 

Not Infrequently, for the sake of proving a single theorem of which virtually 

"le whole theory consists, an extensi-.o axiom system Is worked out. 

Precisely such an axiom system has been given by the authors In 1.3.6, 

and the existence of the required "utility function" has been derived from 

it in the Appendix (pp. 616 - 630). 

3. The theory of games has been developed by von Neumann and 

Morgenstern as a theory of mathematical models of conflicts. Already, in the 

simpler cases, the role of the information a player has about the behavior 

of his partners comes to light. So, in the case of an antagonistic game with 

a payoff function H O^y)» the maximizing player knowing his opponent's choice 

of strategy (for Instance, by virtue of the fact that he makes his choice after 

him) receives with certainty min max H (x,y), and in the opposite case. I.e., 
y  x 

not knowing anything about his adversary, he can only count on max min H (x,y) . 
x  y 

At the same time, from a mathematical point of view, it makes no difference 

at all whether this adversary is a real agent acting consciously and, besides 

that, harmfully, to our player or a fictitious one personifying only the 

player's Insufficient knowledge about the situation in which he has to make 

his decisions. Such opponents may be, for example, nature whose regularities 

may be perceived insufficiently at the moment of decision-making, or, say, a 

person completely well-intentioned towards the player but guided In his actions 

by criteria unknown to him. 
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Thus the theory of games can be viewed also as a mathematical 

apparatus describing decision-making under conditions of uncertainty which 

can be naturally termed strategic uncertainty. Such an approach to the 

theory of games (in particular to antagonistic games) has been systematically 

put forth by A. Wald in his book Statistical Decision Functions /2/. All 

in all, most of the military tactical applications of game theory (see for 

Instance M. Dresher's book /I/ and also the collection of papers /7/) are 

based not so much on the hostile Intentions of the enemy (we will return to 

this question In III.3.3) as on the unpredictability of his actions. The 

technical applications of game theory are based on these considerations, 

examples of which are given by N.N.Vorob'ev in /7/. 

Strategic uncertainty, which game theory deals with, differs fund- 

amentally from statistical uncertainty. Statistical uncertainty prevails in 

those cases where the decision-maker does not know the true state of affairs 

but knows th* a priori probabilities of all possible variants of situations. 

In case of strategic uncertainty, the agent does not have any iuasons for 

ascribing a priori probabilities to these possible variants. 

Correspondingly, under conditions of strategic uncertainty, one has 

to introduce and employ a concept of information different from that used for 

statistical uncertainty. For the case of statistical uncertainty, a theory 

of "selective information", which is now sufficiently well-known, has been 

developed by C. Shannon /I/ and his followers. For the game-theoretical 

strategic uncertainty, the notion of "strategic Information" introduced by 

M. Sakaguchi /I/ is of great Importance. 
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4. Von Neumann and Morgenstern have often illustrated their dis- 

cussiors of the paths of development of game theory and Its applications by 

facts taken from the history of thermodynamics. Hence, they speak in i.3.2. 

about the possibility of obtaining a rigid numerical scale for temperature 

based on the study of the behavior of ideal gases, and about the role of 

absolute temperature in connection with the entropy theorem. 

Therefore, we may note that the numerical scale for temperature 

had been developed long before the nature of ideal gases and of other 

physical conceptions mentioned was clarified.  Its construction was based 

on the immediately observed phenomenon of expansion of heated bodies. At 

the time, this phenomenon had not been logically connected with the pheno- 

mena of heat, thus remaining (in any case until the molecular-kinetic 

theory had been developed) in an external relationship to them. Nevertheless, 

it has subsequently turned out (in particular from the examination of ideal 

gases, etc.) that the expansion caused by heat is, fundamentally,purely 

energetically connected with the measurement of temperature, so that the 

scale constructed has also been the only possible one (up to linear trans- 

formations) . 

Returning to utility theory, we see that at the basis of its 

measurements there is something extrinsically related to utility, in 

particular, the probability combinations of utilities. The analogy to 

thermodynamics may let us hope that this probability approach is ac- 

tually more intrinsically connected with the determination of subjective 

preferences and that further investigations of subjective preferences will 

disclose this connection. Of course, the measurement of utility is a qual- 
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Itatlvely more complicated procedure than the ineasurenient of temperature,  so 

that all of what has been said above is only a conjecture about some similarity 

in the tendencies of  the development of two completely different  theories. 

5.    The concept of a solution as a set of Imputations,  introduced  in 

§4, which generalizes the notion of a maximum, reproduces  in the last resort 

the construction leading  to the set of zero-Grundy function   (see 1.2.5).    The 

solutions are sets of imputations possessing the same properties of internal 

and external stability applied to the relation of domination of imputations 

as  the sets of possible    zero-Grundy functions applied to the relation given 

by the graph.    Therefore,   the multitude of solutions of games turns out to 

be just as much a natural phenomenon as the existence of Grundy functions with 

different  zero-sets on one and  the same graph. 

As the sets of imputations are continuous and Grundy functions    are 

virutally defined for discrete graphs,  the immediate utilization of Grundy 

functions for finding the solutions of games, or at least for proving the exist- 

ence of  solutions  for some classes of games,   is hardly possible.    It is not 

Impossible,  however,   that one may succeed  in extending some properties of Grundy 

functions  to the continuous case and apply them to game theory.    In this conn- 

ection,   the results of M.  Richardson /I/ give us some reason for hope. 

§2:    General Formal Description of Games of Strategy. 

1. Von Neumann and Morgenstern, In their monograph, have reproduced 

and detailed the original definition of a game of strategy Introduced by von 

Neumann in his paper /I/.     This definition turns out  to be extremely capacious: 
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Most of the contributions to game theory which have appeare afterwards refer 

to games just In that sense of the word, maybe somewhat specified or generalized, 

but all changed only a little. 

In particular, these games have subsequently been named non-coalition 

games and have turned out to be one of the widest (as for its size) classes of 

games. For an examination of non-coalition games see III.4. 

2. However, from a broader point of view, some parts of the given 

definition seem to be superfluously restricting. Above all, the receipt of 

the Individual payoff has been considered the goal of every participant in a 

game by von Neumann and Morgenstern. Even in those cases (examined by the 

cooperative variant of the theory) where the players form a coalition for joint 

actions, they do this in order to share among themselves some total payoff 

obtained for the entire coalition. 

At the same time, in the economic and social reality, it may happen 

that the payoff obtained by a coalition belongs to this coalition as such, and 

is not subjected to a further division among the players composing it. In 

particular, it can turn out that one and the same player i,' simultaneously a 

member of two or more different coalitions whose Interests do not coincide. It 

is clear, that game theory laying claim to the sufficiently complete analysis 

of conflicting Interests of various parties, has to reflect this aspect of the 

problem too. To this question we will return again in III.A.7. 

Further, In connection with the treatment of game theory as a mathematical 

theory of decision-making under the conditions of uncertainty, a critical attitude 

cones up towards one of the fundamental theses of game theory requiring that the 
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players are completely informed about the conditions (rules) of the game they 

are participating in. 

From an intuitive point of view the player's knowledge about a game 

means the fulfilment of two conditions: 1) each player knows the aim he is 

striving for and 2) each player is perfectly aware of the consequences which 

are implied by the selection of a certain strategy. 

Formally, however, there is in principle no difference between these 

conditions, and the mathematical treatment of games where the first or the 

second of these conditions (or both) are not fulfilled can be carried out by 

one and the same scheme. It is natural to call such a game indeterminate. 

Rudiments of the theory of indeterminate games are contained in N.N.Vorob'ev's 

paper /5/. 

Eventually, von Neumann and Morgenstern have assumed the finiteness 

of the set of players in every game. While in the future, games with infinite 

sets of players will be without doubt studied more intensively than games with 

finite sets of players, up to the present day, only papers by Shapley /5/, 

Davis /I/ and also Kalisch and Nering /I/ have been dedicated to games with 

infinite sets of players. 

3. As in von Neumann's paper /I/, the general definition of a game 

is given in extensive form. This not only corresponds to the actual course of 

pla, in most games (games in a literal sense of the word as well as conflicts 

or processes of decision-iraking modelled by games) but also reflects the fact 

that the player in the course of play makes his decisions on the basis of the 

information he hag and which can change in the course of play. In particular. 
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the player'p Information about his own past states of information and about 

those decisions he made In them can change.  This last circumstance is described 

In the monograph In terms of "prellmlnarlty" and "anteriority". In the following 

these discussions have served as a starting point for studies undertaken by 

Kuhn 111  and subsequent papers to which we will come in III.5.2. 

4. The inclusion of chance moves Into a game allows for an examination 

of games being simultaneously games of strategy and of hazard. The presentation 

of the set of positions in the form of an orientated graph shows that the general 

definition of a game of strategy also comprehends the combinatorial aspect. 

The fact that the authors have confined themsleves to the case of a 

discrete set of moves, is, from a game-theoretical point of view, not particularly 

essential, though, of course, the transition to a continuous set of moves like, 

for Instance, In differential games (see III.5.7), involves considerable 

difficulties. 

Z.    Strategies are introduced by von Neumann and Morgenstern In the 

course of "final simplification" of the description of a game, resulting in the 

definition of a game In the normalized. I.e., In the purely strategic form. 

While such a simplified description is actually equivalent to the original, 

apparently, however, It represents the description of a more particular object: 

Games where each player makes only one move In complete Ignorance about the 

moves made by each of the other players. That has motivated the authors to 

speak In the following 01.12.1.1) of an extensive game as the extensive form 

of the game. 
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At the same time extensive games are acutally more concrete objects 

than games in the normalized form. In fact, the fundamental concept for games 

of strategy is the concept of a strategy. In games in the normalized form, 

the strategies of the players are deprived of substantial properties whatever 

those may be, being simply elements of some abstract set. In extensive games, 

the strategies appear as functions on the set of all information states of the 

player, i.e., as objects of an essentially more concrete nature, endowed with 

individual properties. 

Wiat has been said above determines also the expediency of utilizing 

the description of games in the normalized form in some cases and in the 

extensive form in other cases. As the authors have remarked in 1.12.1.1, the 

examination of games in the normalized form is better suited for the derivation 

of general theorems being relevant for whole classes of games, for formulations 

of general principles of optimal behavior of the players etc. Games in the 

extensive form are preferably used for the analysis of peculiarities of the 

behavior of the players in a given gane, for determining possible reductions 

of strategies etc.  We note at the same time that in obtaining the actual 

solution of games, i.e., in finding optimal ( or in another sense, expedient) 

strategies of players in some concrete games, one has been successful up to 

now only for games in the normalized form with the exception of some very 

specific cases. 

. 
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§3.    Zero-Sura Two-Person Games:    Theory. 

1.    In 1.12.2 von Neumann and Morgenstern have examined games with 

only one player.    From the mathematical point of view,  finding  the rational 

behavior of  the participant  In such a game consists  In solving a maximization 

problem and  Is not of game-theoretical  interest. 

2.     Zero-sum two-person games.   I.e., antagonistic games,   are the 

simplest ones  In a game-theoretical sense.    Here the conflicts of two parties 

appear  In an  Immediately strategic form,  and are not complicated by any cons- 

iderations concerning the entrance of  players Into a coalition oi: the exchange 

of  Information among them. 

In fact,  in an antagonistic game,  the payoffs to the two players are 

of  equal magnitude and opposite slgni     Therefore,  If some common action of the 

players Is useful for one of  them,  i.e., results In an Increase of his payoff, 

then at the same time it decreases the payoff of the second    player,  i.e.,  it 

is not desirable for him.    That means  that in order for  the player to be willing 

to go with each other on this or that   Issue,  it is necessary that  their common 

action Is not  ot  advantage for anyone  of  them.    But  In that case,  such action 

will in general not have any effect on the outcome of the game and can be 

excluded from consideration. 

Antagonism in the mathematical,  game-theoretical sense,  meaning an 

equality in magnitude and opposition in sign, differs essentially from the 

philosophical concept of the same name.    This one has to bear  In mind when one 

discusses possible ways of modelling conflicts actually encountered by means of 

games or, vice versa, of  empirical  interpretations of game-theoretical constructions, 
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In particular,   the sufficiently adequate mcdelllng of social or military 

conflicts by means of antagonistic games succeeds only In single cases. 

Actually,   in such conflicts each side usually pursues its own aims and   inflicting 

a damage on one's rival  is only a method of attaining one's aim or even simply, 

only an attendant  circumstance. 

fy the way,   the antagonistlcity of  the conflict should not be confused 

with its keenness.    So,   for example,   the military tactical situation where from 

each side one unit of armed forces  is participating and  the aim of each side 

consists in the annihilation of  the opponent's unit,  is not antagonistic from 

the game-theoretical point of view.     Under conditions of an antagonistic 

conflict,   the striving for destruction of  the opponent is counterbalanced by 

the striving for  escaping one's own destruction. 

For a more detailed presentation of  this sort of questions see  the 

paper by N.N.Vorob'ev /4/. 

3.    As the leading principle of optimal behavior for a participant In 

an antagonistic game,  von Neumann and Morgenstern have offered the maxlmin 

(jninlmax)   principle.     The application of  this principle by each of  the players 

results   (with employing mixed strategies,  if needed)  in the value of a game 

as a "fair" payoff   to  the first player  in that game.    The "fAlrness" of   the 

payoff,  equal to the value of the game, can be interpreted as the    tight of 

the player to obtain this sum instead of participating in the game.    The 

probability approach to utility allows us  to consider the mathematical  expect- 

ations of payoffs as real payoffs. 

The authors have proved  the maxlmin principle after a very detailed 
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analysls of the majorant and  the mlnorant games.    These reasonings are 

essentially of an axloroatlc character and can be completely formalized.    There 

Is, however, one Inconvenience limiting the range of possible applications 

of  the theory.    The examination of the majorant and  the mlnorant games  Involves 

the simultaneous description of  the alms of both players.    Therefore,  all  that 

has been said above will be sufficiently convincing without any additions and 

specifications In applications  to decision-making under conditions of a conflict 

between two parties pursuing opposite goals; but  In the case of decision-making 

under conditions, of uncertainty, where the decisions are  In fact made only by 

one side,  some doubts may remain. 

These doubts have been dispelled by E.I.Vllkas /I/ who proposes a 

partitioning of the maxlmln principle Into a few more particular principles 

which he uses as axioms. 

Let v be a function defined on the set of all matrices. We shall 

conceive of v(A) as that fair payoff which a person participating as the 

first player In the matrix game with payoff matrix A can count on. It is 

natural to require that the function   v   possesses the following properties. 

I9    If A and A are two matrices of the same dimension where A _< A 

(the inequality holds for each element)   then 

v (A)  < v 00 . 

In other words, if the player has  the choice to participate   (as the first 

player)   in the game with matrix A or in the game with matrix A where A ^ A, 

then the participation in the game with matrix A is not less preferable. 

2*    If the matrix A Is obtained    from the matrix A by adding to it a 

new row not exceeding some convex linear combination of the rows 
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of the matrix A then 

v(A) " vOO. 

That means that the player Is indifferent between participating In tue game 

with matrix A and playing the game with matrix A where he has at first sight 

more possibilities. 

3*  If we consider the real number x as a matrix, then 

v (x) ^ x 

(i.e., the participation in 1 x 1-game is not less preferable than the 

immediate obtaining of the payoff). 

4° If A is the transposed matrix corresponding to A, then 

v (A) - v (-AT) , 

i.e., it makes no difference to participate either in a game with the matrix 

A or In the game with matrix -A   *^ . 

This system of axioms Is complete in the sense described by the following 

theorem: The function v, satisfying the axioms 1° - 4° is unique and the value 

v (A) is the value of a matrix game with the payoff matrix A. 

As the value of an antagonistic game is Just that value of the player's 

payoff which he obtains following the maximin principle the given system of axioms 

confirms also this principle itself. 

*'  Translator's note: Obviously, axiom 4P is stated here incorrectly. A 
correct version would be 

vft) -v ( -AT ), 

i.e., it makes no difference to participate either as the first player in 
a game A, or as the second player in a game -A . 
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The quoted system of axioms has dealt with preferable actions of only 

one acting person.  It is applicable therefore. Independently of whether his 

opponent is real (selecting his strategies consciously) or fictitious (generator 

of the uncertainty) .  Thereby the fairness of the maximin principle in case of 

decision-making under conditions of uncertainty has been established. 

A. In spite of the fact that the fundamental definition of a game has 

been given by von Neumann and Morgenstern in the extensive form, when examining 

games of this kind they have confined themselves to the important but less 

typical case where the players have perfect information in the game. The result 

received (in § 15)  generalizing the Zermelo theorem (see 1.2.2) is very 

Instructive in its naturalness. Essentially, however, game theory Is a theory 

of optimal decision-making under conditions of uncertainty and, at the same 

time, under conditions of Imperfect information; on the other hand, it is 

characteristic for the theory of gam s that optimal decisions of the players 

are shown to be mixed strategies, 'i.ierefore, it is absolutely natural that 

If the player possesses perfect information In the game. I.e., he is acting, 

fundamentally in a situation which essentially is not a game, then his 

optimal strategy has to be not a game-theoretical one, but 0ne corresponding to 

another level of optimal decision-making. Actually, an optimal strategy turns 

out to be pure in this case. 

5. In §16 the proof of the theorem of the existence of optimal 

strategies in matrix games based on the properties of convex polyhedra is given. 

The questions of finding optimal strategies in practice will be examined in 

III.1.2 - III.1.5. 
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§4. Zeru-Sum Two-Person Games;  Examples. 

1. The content of game theory as a mathematical discipline consists, 

first, in establishing pvinciples of rational, expedient, optimal behavior 

of players; secondly, impravlng the existence of actions of players satisfying 

these principles and, thirdly,in actually finding such actions. Here the first 

constitutes the essence of the theory of games as such, the second makes it 

objective and assures the possibility of applications in principle, and the 

third turns this possibility into an actual one. 

In chapter III. of the monograph, after solving the first two questions 

for finite antagonistic (i.e., for matrix) games, von Neumann and Morgenstern 

have passed to the solution of the third question dedicating to it a separate 

chapter.  When the monograph was written, as well as afterwards, one has not 

succeeded in finding any general methods for solving games, even not for such 

relatively elementary ones like matrix games. Therefore, except for numerical 

methods of solution, the practical results for matrix games are limited hitherto 

to the examination of examples whose number Is not yet large. 

The first example of a solution of a symmetric 3x3 -matrix game has 

been given by Borel (see 1.4.2) . Von Neumann and Mrogenstern have given some 

new examples. 

2. The examination of the 2 x 2-game carried out in 1.18.2, has already 

shown that the attempts to describe its solution by a single formula are not 

economical and for the transition to games of larger dimensions also hopeless. 

Therefore, the solution of games belonging to some class is to be understood 

as an algorithm analyzing the necessary relations between the game parameters and 
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derlvlng on the basis of  this analysis a computational formula.    A matrix 

game, however.   Is given by a matrix,   i.e.,  by a comparatively  large number of 

parameters making necessary the analysis of a host of relations,  and  the 

required algorithm   (if  no specific simplifying devices are Introduced)   is 

very cumbersome. 

Obviously,   the    difficulties shown are  inevitable and  could hardly 

be overcome If one examines each element  of  the matrix as an independent 

parameter bearing  seme  Information of  its own,   independently of  other parameters. 

In fact,   these eleman's of  the payoff matrix often appear not  as original 

parameters of  the game,  but are determined  on the basis of other, rather  limited, 

Initial data.     The calculation of  the payoff matrix is in this  case an inter- 

mediate and not absolutely necessary stage.    In practice such a "non-matrix way 

of the solution of matrix games" means abandoning the utilization of  the 

normalized form of a game and possesses all advantages and inadequacies which 

have been mentioned  In    II.2.5. 

3.    The analysis of a literary conflict exposed In 1.18.A.A attracts 

attention:    The behavior of Sherlock Holmes escaping from Professor Morlarty. 

The analysis of  conflicts by artistic means and the description of  the 

behavior of their participants in accordance with their aims and possibilities 

has occupied a prominent place in the belles-lettres of all times.    As Luce 

and Ralf fa /I/ have justly noted:    "In all of man's written record  there has 

been a preoccupation with conflict of Interest;  possibly only the topics of God, 

love, and  Inner struggle have received comparable attention."    It may be added to 

this that  the  idea  of God as a moral category has been invoked  to point  to  certain 
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principles of resolving conflicts,  that  love  In Its very essence Is a form 

of  common activities  of  persons  endowed with opposite  interests, and  that   inner 

struggle consists in  the  conflict of a person with the  ignorance of that  true 

aim which he has to strive for.     Thereby,  the "theme of  conflict"  turns out  to 

be one of  the most widespread ones in the belles-lettres and in art  In general. 

The theory of games accomplishes  the analysis of conflicts by scientific, 

in particular Mathematical, means.    Therefore It  is of  interest to compare the 

behavior of participants  in  ,  conflict reckoned as optimal by the theory of games 

with the resolution of  this conflict by artistic means. 

The first attempt  of a  systematic approach to this question is contained 

in the paper by N.N.Vorob'ev /8/. 

A.    The extensive §19 of  the monograph is entitled    "Poker and  Bluffing". 

The choice especially of Poker as an example for a detailed analysis,  can be 

explained above all by the fact  that Poker of all so-called "parlor" games 

appears to be the most strategic one:    Combinatorially the game is extremely 

simple and the element of hazard,   i.e., of chance,   is there reduced to the 

minimum and is amendable  to direct  calculation.    Therefore the game of Poker  is 

played not for a successive accumulation of advantage   (as takes place,  say,   in 

chess)  but  immediately for utilities   (usually for money) . 

Being fundamentally an extensive game.  Poker possesses its own specific 

principles of optimal  behavior of  players.    The utilization of optimal mixed 

strategies with a positive  probability of bluffing,  belongs to these principles 

too.    The chance bluffing  is one of a few examples of mixed strategies  intuitively 

found and  systematically used in parlor games. 
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§5; Zero-Sum Three-Person Games. 

1. Beginning with the fifth chapter, von Neumann and Morgenstern 

have left  the purely strategic ground  and  Introduced into  the  investigation 

the cooperative aspect of the problem.    Here the results of  the analysis turn 

out to be less complete than in the antagonistic case.    The solution of an 

antagonistic game, whose existence  for   the finite case has been established 

in chapter III,  points out some way of acting which guarantees  the player a 

sure payoff   (equal  to the value of  the game) .     Within the cooperative  theory, 

one already fails  to obtain such a  result or a similar one.    The player gai. s 

the sum pointed out by the theory not by force relying just on his own possibil- 

ities, but only corvditlonilly,  given a  certain behavior of  some other partic- 

ipants of   the game.     Thus the conditions of  realizabillty of  claims   (as well as 

their quantitative characteristics)   given by the theory,  turn out to be necessary 

but not sufficient. 

On the contrary, in a three-person game  (essential)   all winning     (i.e., 

two-element)   coalitions get one and the same payoff, and all losing   (one-element) 

ones suffer one and  the same damage.    Thus  in the three-person game,   the cooper- 

ative aspect appears in its purest  form:    The aim of the player  is to Join a 

winning coalition.    This idea has been elaborated in detail in chapter X dedicated 

to the simple games.    The essential three-person game is simple   (and besides 

that a majority game,  see    §50). 

2. The concepts of the imputation and the solution as a set of  imputations 

turn out  to be new and Important  in principle.    Every  Imputation can virtually 

be considered a dilemma the players are confronted with:    Either  to obtain a sum 
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provldt'd by tht» Imputation or turn to the game for receiving one's payoff In 

It. The Imputation can be regarded "fair" If both of these possibilities are 

equivalent for the players. In that respect the fair Imputation plays a role 

similar to the value of the antagonistic game:  For the player Is Indifferent 

between participating In the game (as the first player) and obtaining the value 

of the game Immediately. 

3. An Imputation can be conceived of as the outcome of a game, proposed 

by a person who Is external in his relationship to the given game. The 

possible activities of this person are various imputations and his aim is the 

acceptance of the imputation offered. If there exist several such persons, 

then their aims are obviously different and by evaluating their goals quant- 

atlvely we arrive at a game which, because of its relationship to the initial 

game, may be called a metagame. Its participants will be called metaplayers. 

A metaplayer may be interpreted as a person bringing before the whole group I 

of the players some project that affects the interests of each player. Roughly 

speaking, the metaplayer's aim takes shape through his proposition of dominating 

and non-dominating imputations. 

As in the three-person game two imputations cannot simultaneously 

dominate each other, the antagonistic metagame can under these conditions be 

constructed very simply: If a and ß are Imputations selected by the metaplayers 

I and II respectively, then 

1 for a > ß 

H ( a,6 )- -1 for a < P 

0 otherwise 
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It is not difficult  to check if this metagamc coincides with  the 

infinite game described by Borel   (see 1.4.2).     Its nolutlon hns been  found  by 

A.I.Sobol'ev III. 

§6;  Formulation of  the General Theory;  Zero-Sum n-Person GamoH. 

1.     The fundamental concept of  the cooperative  theory Is the concept 

of  the characteristic function defined on the set of all  coalitions.    The 

system of  relations   (25:3:b),   (25:3:b), and   (25:3:c)   expressing the fundamental 

properties  of characte»lstlc functions Is virtually a system of axioms describing 

the natural properties of  the possibilities that every coalition has under  the 

least favorable circumstances,   in particular, where all players not joining a 

coalition conjointly stand out against it. 

These axioms are in accord with the fundamental  ideas of game theory, 

for  the function whose values are  the values of  the antagonistic games of 

coalitions against their complements,  fulfill  these axioms.     At the same time, 

the system of axioms is complete in the sense that  there exist no "generally 

valid"   (i.e.,  true in all Interpretations of games)   statements not depending 

on the axioms given.    That has been proved in    §26 by indicating a method for 

the construction of a game with an arbitrary given characteristic function. 

All in all,  the remainder of  the monograph deals not with games,  but 

with characteristic functions.     Therefore,  in the following,   it would be possible 

to replace   (except for a few single sections)   the term "game" by the term 

"characteristic function".    The authors have not done that because they have 

limited  themselves to the study of   those properties of games which manifest 

fl 
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themselves   In  their  characteristic  functions. 

2.     The fundamental  problem of   the cooperative theory  Is   the formal- 

Izatlon of   the  transition from the given possibilities of each coalition,  to 

the Individual posslbllitle-s of   the players.    Here the assumption has been 

used  that  the utilities obtained by the players and  colaitlons can be unrest- 

rictedly transferred   to other players and  coalitions even without  any quant- 

itative charge.     In other words  the problem consists in  the construction, 

based on  the characteristic function of  the game,  of such an  imputation or 

such Imputations which for given conditions would be in some sense natural and 

"fair". 

The solution  of  this  problem depends,   of course,   on those  axioms of 

fairness which  have  been presented. 

Von Neumenn and Morgenstern have  offered,  in fact,  a  system of   three 

axioms  giving a  set  of   imputations V called   the solution of  the game. 

1°     For  any   Imputation     ( a-^,   ...,   a ) 

a1       >_     v (1) 

la,       =0 
1    i 

2° No two Imputations in a solution V dominate each other (the axiom 

of Internal stability). 

3"  Whatever the imputation a not in V Is, there exists an imputation ß 

in V which dominates a . 

Defining the solution in this way Justifies its name from the point 

of view of naturalness.  The purely mathematical theory of solutions is very 
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substantlal. For some results obtained In that direction sep In lll.i.'i - 

III.3.7. 

However, the reduction of the analysis of the game (at least In tlic 

form of Its characteristic function) to finding and examining Its solutions 

cannot be recognized as exhaustive. 

First, except for trivial C'lnessent ial") games the solution lias to 

consist of more than one Imputation. This depreciates very much the normative 

content of the concept of solution, for even a solution found does not show 

which payoffs the players receive as the result of the game. 

Secondly, many games (Including already the simplest of essential 

ones - the zero-sum three-person games) possesses many solutions. Therefore, 

it would be desirable to complete the axioms quoted by indicating the selection 

of a certain solution. 

Kuhn and Tucker 111  have quoted from Wolfe's report some remarks made 

by von Neumann ten years later as chairman of a "round table" discussion in 

Princeton, February 1, 1955:  "Von Neumann pointed out that the enormous variety 

of solutions which may obtain for n-person games was not surprising in view 

of the correspondingly enormous variety of observed stable social structures; 

many differing conventions can endure, existing today for no better reason than 

that they were yesterday.  It is therefore, still of primary importance to 

settle the general question of the existence of a solution for any n-person game", 

Thirdly, at last, the answer to the question mentioned by von Neumann 

turned out to be negative.  Only recently, Lucas /I/ has given an example of a 

ten-person game not possessing a solution. Thus it turns out that the system 

of axioms for the solution does not correspond completely to the? system of axioms 
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for thf cliarncterlst 1c function. 

The proofs of soluabiHtv for sufficiently broad classes of Rames are 

rather complicated. Von Neumann and Morgenstern have ascertained (see 1.60.4.2) 

that any zero-sum four-person game has at least one solution. For the case 

of zero-sum five-person games, however, the question already remains open. 

3.  Shapley /!/ has offered another system of axioms free of the 

deficiencies mentioned.  First of all, he has examined imputations, i.e., 

vectors fulfilling axiom 1° quoted above. Further, for every characteristic 

function v, among all imputations he has chosen such imputations 

Ijl (v)  =   ( ^ (v) 1 n (v) ) , 

which he has called vectors of values of   the game,   satisfying the following 

axioms: 

2°     For  every automorphism *'   ^ of  the characteristic function v 

V   (v)   = ^   (v) . 

3°     If  player 1 is a  "dummy" *',   then 

^   (v)   = v (1) . 

4°     For any two characteristic  functions v^ and V2 

^   (V-L + v2)   = ^   (v^   + $   (V2) 

(Jit  is not  difficult  to convince oneself   that the sum Vi + v.  of  two charact- 

*'     For  the definition of  the automorphism   (symmetry)   of  the characteristic 
function  see page 256  f. 

*)     Player   1   Is  called a  "dummy"   if   for  anv coalition S   such   that   itfS,  v (S  L^ 1) 
v(S)   + v (i)   holds. 
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erlstlc fuir lone is Itself a characteristic function.) 

This system of axioms Is consistent and complete.  In parllculnr, Llic 

following statement Is true: For every characteristic function v there exists 

one and only one vector of values ^ (v) ; the components of this vec tor are 

determined by the formula 

Vv) I       (|S I - 1)!  (n - |S|)! 
SCI 

n! 
( vCS) - v (§-  (1)) 

(  |s |     Is the number of   the elements  In the set S) . 

This statement  can be Interpreted  In the  following natural way: 

There exists an interchange of players    *f:{ ^  ,   ...,   7   }   .    Somewhere  In 

this interchange is player  i.    Put    i =   f    and S  =  { *f„   ...,   f^).  Then the 

difference 

vCS)   - v(S - (1»=      A (v.  i.t) 

can be considered as an increase of  the value of   the characteristic function v 

at the cost of player  1 joining the coalition    S -  i under conditions  of   the 

interchange   T .    Obviously,  at different  interchanges this increase may be 

different too.    Shapley has proved the following  theorem:    The value ^   .    (v) 

is the mathematical expectation of the increase      ^(v,   1,1)   if all  inter- 

changes ^ are equally probable. 

In one of his later papers /5/ Shapley has  extended  this approach to 

a class of games with an infinite set of players and has obtained very  interesting 

results. 
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A.    Von Neumann and Morgenstern have systematically used the reduced 

form of   the characteristic  function for which v (1)   ■ -y   and vCO  ■ 0, 

usually assuming Y'" !■    Such characteristic functions are now called -1 -0 - 

reduced  characteristic   functions.  Sometimes one obtains an Intuitively more 

appealing picture by passing   to  the 0-1 -reduced  form    of   the characteristic 

function where f (i)   =0 and  Y~ (I)   = 1.    It is clear   that  It Is possible to 

pass  from one form to the other by means of  the transformation of strategic 

equivalence. 

§7:     Zero-Sum Four-Person Games. 

1.    Contrary to three-person games forming only two classes of 

strategically equivalent  games,   four-person games are  extremely manifold. 

Among  them  there is a continuous set of strategic equivalence classes des- 

cribed  In a natural way by the points of a cube.    Von Neumann and Morgenstern 

have found  solutions for games  corresponding to some domains of  this cube. 

Complete sets of solutions have been shown only for the corners of the cube. 

The types of solutions which thereby have been revealed are extremely 

manifold.     It suffices  to stress  that for the «aln diagonal of the cube lying 

on the  line Xj = X2 = x-,  there correspond solutions of various kinds to each 

of   its parts    -1 < Xj ^ -1/5,     -1/5 < x    < 0,    0 £ x1 <   1/9,    1/9 1 xj £ 1/3, 

1/3 <  x1 <   1, 

The authors have postponed the detailed description of all results 

obtained to a subipquent publication (see the footnote on the page 305) , but 
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thelr plan has not been realized. 

2.    The liranediate continuation of von Neumann's and Morgonstcrn's 

Investigations   In the field of  the theory of  four-person games has been 

undertaken by Mills  /I/:    He has enumerated all solutions of  games corres- 

ponding to the faces of the cube and has  shown some properties of games 

corresponding  to  the points of  Its edges. 

An exhaustive analysis of a series of  questions concerning zero-sum 

four-person games examined as quota games  is due to Shapley 111   (see III.3.6) 

§8:    Some Remarks Concerning n >  5 Participants. 

1.    The  table of Figure 65 in 1.19.2.3   (see page 331)   Is very  Impressive. 

It discourages  one to  engage In the cataloguing of solutions to five-person games 

(the classes of  strategically equivalent  five-person games form a   ten-param- 

etrlcal family!) .    Even classes of symmetric five-person games form a continuous 

family,  though a one-parametrlcal one.    Here It  Is appropriate to remember the 

regrettable circumstance that  It Is unknown whether all five-person games 

possess solutions. 

It becomes particularly obvious  that we must make the  transition from 

the systematic description of games with few participants,   to the development 

of an.   In some sense more simply constructed, general theory of  "calculation 

of games", where  the study of properties of some games would  lead  to the study 

of properties of other games.      The first  example of such a reduction can be 

found  in 1.35.2, where the four-person game has been "split"  Into a three- 

person game and  a separate "dummy".    The second example is  the analogy pointed 
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out  In i.40.3,  between  the symmetric five-person games and the four-person 

games  corresponding  to  the points of the main diagonal of  the cube.    One o/ 

the possible lines of development of these ideas has been discussed In 

chapter IX. 

Another way consists  In separating some classes of games possessing 

properties which facilitate their classification and analysis.     (It is already 

clear  that a fixed number of  the players does not belong to these properties) . 

One such class has been examined in chapter X. 

2.    In 1.40.2.3,   the authors have made a very interesting remark 

about  the description of games by means of  formulating the aims of  the players 

after  their entering  into a coalition.    This reveals some perspectives of a 

reduction from the vague and descriptive cooperative aspect of  the game to a 

more exact and formalized aspect - the strategic one.    The important step In 

this direction has been made by the authors  in    §26. 

§9;    Composition and Decomposition of Games. 

1.    In chapter IX, von Neumann and Morgenstern have Introduced  the 

operation of composition    on the set of all games   (by the way,   it would be 

particularly appropriate here to speak not about  the set of games,  but about 

the set of all characteristic functions) .    As in the whole book, the authors 

have avoided any evident refereneces to mathematical   (in this case - 

algebraical)  analogies,   and only the mention of  the book by G. Rirkhoff and 

S . MacLane   (on page 340)   points to those algebraical associations which the 

authors possibly had  in mind,  and which they probably even followed. 
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The construction of  the composition of games reminds us very much of 

direct products of groups, annulling sums of halfgroups,  orthogonal  products 

of spaces - In one word,  those formations where the elements of various 

components interact with each other  in the simplest manner.     For games,  the 

simplest Interrelation among the players Is the almlessness  of   the coalitions 

formed by them   (what can formally be expressed by the addltlvlty of  the 

corresponding values of the characteristic function), 

2.     In 1.44.3.2 the Important question of  the relationship between 

the mathematical propositions obtained by formal means on the one hand, and 

the requirements of "common sense" on the other hand,  has been touched upon. 

The authors have been Inclined   (in the given place and generally)   to attribute 

to "commone sense"  the role of a criterion of  truth,  losing sight of  its 

inevitable limitations and occasional subjectivity. 

The requirements of common sense indeed play an essential role in 

establishing  the fundamental theses of a mathematical theory.     If,however, 

paradoxical conclusions of the theory are in contradiction to common sense, 

then one should not assume a. priori  that  this circumstance overthrows  the 

theory:    Perhaps it testifies only to the necessity of revising or at  least 

specifying the conception of common sense.    The contemporary scientific 

common sense is differently used  in case of non-commutative operations,  non- 

Euclidean geometry,  relatlvistic mechanics etc. 

For  instance,in certain cases,the Incorrectness of  statement   (44;D) 

is not at all less in accord with common sense than, say,   the possibility for 

automorphisms of the direct product of groups not to be the products of 
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automorphisms of the groups.  Besides, in the given case It turns out that 

the "Intuitively probable" statement (44:B:a) is false too. 

What has been said cannot diminish the pedagogical role of common 

sense, especially in such young disciplines which, like game theory, possess 

broad fields of application. Tha appearance of results, in early stages of 

the logical development of the theory, which are inconsistent with generally 

accepted intuitive conceptions can only uselessly discredit the theory. One 

can hope that in the course of time the propositions of game theory (concerning, 

for Instance, the solutions in the cooperative theory) will be subjected to an 

objective experimental examination. The first steps in this direction have 

already been done (see for Instance the papers by Kalisch, Mllnor, Nash and 

Nerlng /!/, Luce /l/. Maschler /2/, Fouraker's survey containing an extensive 

bibliography, and among recent papers the report by Fürst /I/). 

For the time being, however, it is somewhat early to speak of systematical 

experimentation in game theory. Therefore it is completely understandable that 

here, as well as in numerous other passages, von Neumann and Morgenstern have 

not missed a chance for emphasizing the accordance of the conclusions of 

game theory with common sense. 

At the same time, if one has no doubts about the truth of the theory, 

the divergence between theoretical conclusions and conceptions of common 

sense sometimes motivates modifications towards a generalization of the theory 

in order to enclose in its conclusions thoso intuitive considerations which 

originally have not been covered. So, the lark of naturalness of the conclusions 

about the solutions of the composition of K'"1"'« COITU'H from the limitation to 

zero-sum games. The removal of Mils reHtilrilon (In I .M .4) .IIIOWH IIH to 
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construct, in what follows, a more natural (though an essentially more 

cumbersome) variant of the theory. 

3.  The Introduction of the excess (1.4A.5 ff) for extended Imputations 

Involves the concept of an Imputation as a possibility alternative to actually 

participating and acting In the game.  Therefore, a too great negative excess 

stimulates the participation of the players in the game even without cooperation. 

A too great positive excess offers the players imputations more preferable than 

their possible payoffs are (even under conditions of coalition formation). Thus 

the investigation of the question of decomposition of zero-sum games leads to 

the necessity of the study of zero-sum games. 

We note, at last, that the examination of detached (correspondingly, 

fully detached) Imputations anticipates the subsequent introduction of the 

concept of the core for the characteristic function (see III.3.8). 

§10; Simple Games. 

1. The characteristic functions of simple games are intuitively 

defined in 0-1-reduced form (see II.6.4) as characteristic functions assuming 

only the values 0 and 1. Here the coalition S with v (5) - 1 is winning and 

with v CO > 0 losing. In simple games the cooperative aspect of the game 

reaches its most accurate expression: In them, as von Neumann and Morgenstern 

have noted ingeniously, there is only one type of payoff. 

An important class of simple games are the weighted majority games 

where to every player 1, a weight w^ is attributed, and those coalitions are 

declared winning for which £ w. > 1/2 £ w..  Every such game is denoted by 
i£S        1CI 
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the symbol [w , ..., w ].  It turns out that all simple games with a number 

of players not more than five are weighted majority games ( for a large 

number of players that does not hold any more) . 

Heuristic reasonings led the authors to detaching some specific 

solutions of simple games calling them "main".  The idea of the main solution 

consists In considering such imputations as acceptable where the members of 

some minimal winning coalitions share a unit with each other (supposing that 

the game Is given in 0-1-reduced form). The actual obtaining of the main 

eolutlon, however, turns out to be very complicated both logically and tech- 

nically. The further development of these ideas is contained in a paper by 

Isbell III. 

The theory of simple games has turned out to be very substantial.  For 

results obtained in this direction see III.3.7. 

§11; General Non-Zero-Sum Games. 

1. The abandomnent of the constancy of the sum of the player's 

payoffs (and a fortiori of its transformation to zero) makes it necessary 

for von Neumann and Morgenstern to extend the theory constructed earlier. In 

principle, this can be done in several ways. 

The first one of them is connected with a radical abandonment of the 

reduction of a game to its characteristic function and with the return to the 

primary concept of game theory - the payoff function. Here, however, the 

necessity arises of establishing more general principles of rational behavior 

of the players than those on which the theory of antagonistic games has been 
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based. The rudiments of a corresponding theory emerged in the paper by Nash 

/2/, but a sufficiently complete conception of a "solution" of games In this 

sense does not exist up to now. 

The second way is based on the formal extension of the results of 

the theory of characteristic functions to functions possessing only properties 

of standardization and supperadditlvity 

v( 0 ) = 0 

v(SUT)=v(S)+ v(T) 

( 1 ) 

( 2 ) 

for any disjoint coalitions S  and T. 

Obviously, here the concept of an Imputation as a vector 

a =   ( a.,   ...,    a    )  can be defined such that 
J. n 

a1 - v ( 1 ), Z at ' v   ( I ). 
iel 

and on the basis of It the concepts of domination of imputations and of 

solution. 

Thus, the bond to the initial strategic aspect of the problem has 

been essentially weakened: The value of the characteristic function has been 

changed from the value of a real antagonistic game, to the value of some 

fictitious game, and even to a purely normative characteristic of the 

coalition.  Me note here that, as Gilles /2/ has shown, it is formally possible 

to drop the condition of superaddltivity (2): For any arbitrary (i.e., not 

necessarily superadditive) characteristic function, a superadditive characteristic 

function can be found such that there exists a one-to-one domination-preserving 
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correspondence between the imputations of the former and the latter. 

2. Von Neumann and Morgenstern have chosen the second way, but for 

the purpose of preserving the Intuitive meaning of the characteristic function 

they have undertaken a roundabout manoeuvre. For every general game (i.e., 

a game with a variable sum of payoffs T ), they introduce a zero-sum game T 

which may be called an extension of the original game F to a zero-sum game, 

and which has to reproduce all its fundamental strategic and cooperative 

features. 

The transition from the game V  to Its zero-sum extension T^, can be 

achieved by the inclusion of an additional fictitious player in T  possessing 

a single strategy and In all situations automatically absorbing the entire 

algebraic sum of the losses of all remaining players. 

The characteristic function of the game T can be determined on the 

basis of the theory developed earlier.  After restricting the characteristic 

function obtained to the set of only real players, we arrive at the charact- 

eristic function of the game T  possessing the properties (1) and (2). 

From the purely strategic point of view, there is no difference between 

the initial game T  and its extension T  obtained: In both games the strategic 

possibilities of the players are the same and their Identical use leads to 

identical results. 

On the cooperative level, however, these games differ from each other 

essentially.  Inasmuch as the fictitious player may obtain a larger or smaller 

payoff, he has some Interests. For the realization of his goals, he can come 

to an agreement with other real players, compensating them for the losses they 
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may suffer when Increasing his payoff. This appears more probable as the 

strategic possibilities of the real players lose their meaning as a result of 

the transition to the characteristic function, and in that sense the real 

players themselves turn into fictitious ones. Such an equalization of the 

rights of the fictitious player with the real ones is shown intuitively in the 

example of 1.56.4.1. 

Since the game T  has been Introduced for modelling the game F, it must 

be examined only partially, allowing in it only those possibilities oi players 

which F possesses. This can be achieved by an appropriate modification of the 

concept of domination (resulting in the fact that the effectlvity of every 

set Is meant as the effectlvity of the subset of all its real players) , and 

the modified concept of a solution based on it (1.56.12).  In this new solution, 

only such imputations are contained where the fictitious player, n + 1, obtains 

only v( n + 1 ). Thus in the solutions of the initial game T  , the cooperative 

possibilities of the fictitious player are disregarded. 

3. The dependence of the payoff of each player on strategies selected 

by other players makes up the substance of game theory. Therefore, those 

cases are extremely Interesting where this dependence is not valid to a full 

extent. In 1.57.4, von Neumann and Morgenstern have detached the extreme case 

of the absence of such dependence by introductlng the concept of a removable set. 

The authors have pointed out that any two-element set in the essential zero-sum 

three-person game can be removed. The fact seems to be paradoxical, and 

therefore we will use the following example as an Illustration. 

Let player 1 possess two strategies and the sets of strategies of 
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players 2 and 3 be arbitrary.  If 1 plays his first strategy, then. Independently 

of the strategies chosen by the players 2 and 3, he, as well as 3, receive a 

zero-payoff, and player two a unit. If 1 choses his second strategy, then 3 

receives a unit In all situations, and 1 as well as 2 obtain zero. 

This is an essential zero-sum three-person game In 0-1-reduced form, 

where the set of players {2,3}  is removable. 

4. Von Neumann and Morgenstern devote the last four paragraphs of 

chapter XI to the economic interpretation of some simple facts of cooperative 

game theory. Here it should be emphasized once more that the contents of 

these sections deal neither with the description of any economic phenomena as 

such, nor with their modelling in terms of game theory, but solely with an 

Interpretation using economic language of certain game-theoretical propositions. 

The authors are speaking about various kinds of markets: with one seller and 

one buyer ( § 61) , with one seller and two buyers ( § 62 and § 63), and event- 

ually a «arket with 1 sellers and m buyers ( § 64). As matter of fact, they 

have limited themselves to the examination of purchasing and selling acts only, 

considering in detail that case where only one transaction is possible.  It is 

clear that such a game-theoretical analysis does not describe the phenomena 

mentioned in their full scope, but only their single features. 
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§12; Extension of the Concepts of Domination and Solution. 

1. The differences In the variants of the concepts of domination and 

solution have motivated the authors to examine these questions In an abstract 

way, a way that does not fix the nature of Imputations and assumes domination 

to be an arbitrary relation on the set of Imputations. In particular, they 

have proved (in 1.65.8.2) the proposition which Is a special case of 

Richardson's theorem (see 1.2.6). The questions of the existence of some- 

what modified solutions have been examined In Richardson's paper /3/. 

2. In 1.66.3, von Neumann and Morgenstern have attempted to avoid 

the assumption of the transfer^ablllty of utility. They have introduced 

domains of Individual utilities 16^ for every player 1, and "U-CT) for every 

coalition T, forestalling thereby those results that have been obtained only 

recently, (see III.3.11.) . 

3. An Important assumption of the entire theory Is the condition of 

unrestricted divisibility of utility. The abandonment of this condition leads 

to various consequences; In 1.65.9.2, the possibility of an approximation of 

games with continuous sets of imputations and a multitude of solutions for 

every game by games with discrete sets of imputations and a unique solution 

for every game, has been pointed out. 

The limited divisibility of utility can be interpreted as a limitation 

of a person's ability of distinction of utilities, i.e., as a limitation (in 

the well-known sense) of the information a person possesses about his utilities. 

The assessment of such an Imperfection of Inforaatlon is the result of a 
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conslstent game-theoretical approach to this question.    As was to be expected 

It,  turns out   (see 1.67.3)   that the player who Is able to make finer distin- 

ctions of utilities Is In an Advantageous position. 

mmm 
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Chapter III 

THEORY  OF  GAMES-A  BRANCH  OF 

MATHEMATICS 

Since the time the monograph Theory of Games and Economic Be- 

havior was published, game theory has developed into an extensive discipline. 

A considerable number of monographs have been dedicated to it, which are dis- 

cussed in sufficient detail in 0. Morgenstern's foreword to the present edi- 

tion, and an enormous number of articles (the bibliography compiled in 1953 

by G. Thompson and D. Thompson 111  has already comprised 1009 titles). 

The variety of several lines of development is characteristic of 

contemporary game theory. That is completely natural, for decision-making 

both in conflict situations and under conditions of uncertainty ie an ex- 

tremely complicated subject whose study can be approached from various sides. 

Therefore, a description, or at least a systematizatlon of all results ob- 

tained in game theory, is practically impossible. In this chapter the fund- 

amental trends in game theory will be analyzed and the most typical results 

will be presented. 

As we speak here about game theory as a branch of mathematics, we 

will not touch the various applications of game theory, despite their inter- 

est and instructive content. 



-75- 

§1; Matrix Games. 

1. At the present time, matrix games are sufficiently studied from 

a theoretical point of view.  Bohnenblust, Karlln, and Shfpley /I/ have 

ascertained the possible location of the polyhedra of optimal strategies of 

the players in matrix games within the simpllces of all their mixed strategies, 

showing the necessary relations between the dimensions of the former and the 

latter. They have given a method for constructing a matrix game with a given 

solution. The investigation of this last problem has been completed in the 

paper by Gale and Sherman /I/, who have characterized the set of pairs of 

convex polyhedra which can serve as the sets of optimal strategies for the 

players in some matrix game, and have also found a method for the description 

of all games with given sets of optimal strategies for the players. For 

matrix games, the plurality of solutions to games Is In some sense an 

exception. Bohnenblust, Karlln, and Shapley 11/  have ascertained that the 

set of all mxn-games with unique solutions Is open and dense In the rnn-dlo- 

ensional Euclidean space of all mxn-games. 

Extremely interesting investigations concerning the general combinat- 

orial properties of saddle points in matrices have been carried out by Shapley /hi. 

2. The considerations in 1.18.2 of von Neumann's and Morgenstern's 

book show that the description of solutions of matrix games by one single 

formula is practically impossible even in the simplest cases. Hence, there 

are two natural ways for finding solutions of games. 

First, one can attempt to detach some classes of matrix games which 
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depend on a small number of parameters   (for this see II.4.2).    Solutions for 

such   (by the way, pretty narrow and not numerous)  classes of games can be 

found In books by Karlln /3/ and Dresher /I/. 

Secondly, one can construct an algorithm for finding all   (or at least 

some)  solutions to an arbitrary matrix game. 

The first such algorithm possessing also generally theoretical signif- 

icance has been found by Shapley and Snow /I/.    Its essence can be described 

by the following theorem. 

Let X and Y be optimal strategies of the players I  and II  In a game 

with payoff matrix A j* 0.    A necessary and sufficient condition for X and Y 

being extreme points   (corners)  of  the corresponding polyhedra of optimal 

strategies,  is the existence of a non-singular rxr-sub-matrix B of A for which 

J  B"1 B-ij1 1 
_: ,     T      L_. VCA) - •    a) 
J^B-1.!1 B J   B-1.!1 J   B"1!1 

r       r r       r r       r 

(Here Xg and Y. denote those parts of vectors X and Y which are composed of 

the elements corresponding to the rows and columns of A that are contained in 

its sub-matrix B; Jr is a r-dimensional vector all components of which are 

equal to unity). 

As every finite matrix contains only a finite number ot sub-matrices, 

the successive examination of all sub-matrices of A, the formation of vectors 

Xg and Yg in accordance with formula (1)» and the examination of their "strategic 

qualities" and "optimallty", allows us to find all the corners of the polyhedra 

of optimal strategies after executing a finite number of operations. Hence, 

passing to convex combinations may result, in general, in the discovery of all 

aaaaMMMM 
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optlmal strategies too. 

3. A very interesting method for the approximative finding of optimal 

strategies of players In a matrix game based on differential equations has been 

offered by Brown and von Neumann. 

Let A be a skew-symmetric nxn-matrlx (an examination of games only 

with skew-symmetric payoff matrices does not diminish the generality of the 

considerations) , then an optimal strategy for each of the players is a limit 

point of the solution of the system of differential equations 

dxi (t) 
= f i (x) - x. I   f. (x) 

i-1 ■' 
(2) 

dt 

for arbitrary starting conditions   (x°,   ...,  x0) ,  such that 1 n 

x! > 0,    1=1,   ....  n;        Z    x° = 1, 
1-1 

where 

^ (x)  = max {0,     Z    aiix-i  ^ 

Unfortunately,   in practice even the numerical solution of system   (2)   causes 

great difficulties. 

4.    Another way of finding at least one strategy for each player, offered 

by  Brown and strictly proved by J. Robinson /!/,  consists in applying an 

iterative procedure.    This can also be Interpreted as an experimental finding 

of optimal strategies in the course of a match each of whose plays consists 

in playing the given matrix game, where in each play,   each player fixes the 
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frequencles of his adversayr's choice of pure strategies for the time elapsed 

since the match began regarding them as the probabilities in a mixed strategy, 

and chooses that pure strategy which is the best against this mixed one. 

The estimation of the convergence of the described process, given by 

Shapiro /I/, shows that It converges very slowly: The error in the decerminatlon 
_1  

of the value of an nxm-game after t steps is of the order - n+m-z 

5. As Gale 111  has written, "one of the most striking events in 

connection with the emergence of modern linear economic model theory was the 

simultaneous but Independent development of linear programming on the one hand, 

and game theory on the other, and the eventual realization of the very close 

relationship that exists between the two subjects". According to Dantzlg's 

evidence /I/ the relationship between linear programming and game theory has 

been already pointed out by J. von Neumann in 1947. Later on Gale, Kuhn, 

and Tucker /I/ have occupied themselves with these questions. In the most 

natural form, the equivalence of a pair of dual problems of linear programming 

and a matrix game is given by the theorem of Dantzlg and Brown, and published 

by Dantzlg 12/.    Consider a pair of dual problems of linear programming 

AXT 4 BT, 

CXT •*■ max, 

OC > 0), 

YA < c, 

YBT ■»• min. 

^  > 0). 

A necessary and sufficient condition that Xs and Ye are optimal solutions 

of these problems Is that the vectors 

( tX*. tY*,  t ) 
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1s an optimal strategy for one of the players In the game with the matrix 

0 

AT 

-B 

(since  this matrix  Is  skew-symmetric  It  is not  Important which player  In part- 

icular  is here referred to).where t > 0. 

The equivalence of the solution of a matrix game with the solution of 

problems of linear  programming allows us  to utilize all methods of solution 

developed for the latter problem for solving the former.    In particular, optimal 

strategies in matrix games can be found by means of the well-known simplex- 

method.    A very practical method for solving a matrix game by means of linear 

programming has been proposed by Tucker  /I/. 

6.    The correspondence discovered between matrix games and pairs of dual 

problems cf  linear programming is that to every class of matrix games belongs a 

class of problems of  1 near programming,  and vice versa.    It may turn out that, 

to a class of games naturally delineated  in the sense of  the intuitive inter- 

pretation of  the games forming it,  there corresponds a class of pairs of linear 

programming problems also delineated  in a sufficiently natural way, but already 

in another,  "linear programming"  Interpretation.    Examples for such a correspon- 

dence between  the classes may prove very useful because certain facts considerably 

tangled  in one of  these classes may be intuitively    clear  in the other one. 

One such example has been examined by von Neumann in paper  /2/.    It 

consists  In the following. 

■1 
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Glven an mxn-matrix A ■  | |a . 11 . Player I has cells (Ij) as his 

strategies and player II Its rows (1) and columns (j) . If player I chooses 

the cell (ij), then his payoff for player II's choice of row 1 or column j is 

equal to -a^j, otherwise it is equal to zero. In the result we obtain a 

mnx (jn + n)-matrix game. 

All games of this type can be interpreted as follows. Player I "hides" 

in a cell of matrix A and player II attempts to guess the row or column on 

which this cell is located. If player II succeeds in guessing it, then he 

receives from player I an amount equal to the number in the cell of the matrix 

chosen. 

This game is equivalent to the linear programming problem consisting 

in maximization of the sum 

* alJXiJ 

for non-negative x..., subject to the constraints V1J 

m 
Z x.. ^ 1, j - 1 n. 

i-1 IJ 

E x..  < 1,  i«l o. 
j-1   J 

Such a problem of linear programming is known under the name "assignment 

problem":    The problem of distributing, in an optimal way, m persons to n Jobs 

if the effect of person i in Job J   is equal to a... 

7.    If the set of strategies of the players in an antagonistic game are 

convex poiyhedra   (with a finite number of corners)in finitely dimensional Euclidean 
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spaces, and the payoff function Is bilinear, then the game Is called poly- 

hedral. Since strategies are like "physical" mixtures of corners, the Interior 

points of the strategy polyhedra result. In view of the blllnearlty of the 

payoff function. In the same payoffs as the corresponding probability mixtures, 

i.e., mixed strategies. Therefore, in polyhedral games, one can confine one- 

self to the examination of only those pure strategies which are located in the 

coiners of the strategy polyhedra, thereby changing the polyhedral game into 

a finite one. 

The game obtained turns out to be a matrix game if the original poly- 

hedra of strategies are given by their corners. If, however, these polyhedra 

are given by their edges, then the game remains now, as before, a finite antag- 

onistic (i.e., matrix) game, but in order to derive its payoff matrix in an 

obvious form, it is necessary to put up with well-known inconveniences which 

can often be rather considerable. Therefore, the question arises about the 

solution of polyhedral games without this preliminary reduction to the tradi- 

tional matrix form. Obviously we meet here a sub-case of the problem touched 

upon in II.A.2. 

The relationship between matrix games and linear programming allows 

us to solve this problem, as has been done in paper by Dantzig /3/, Charnes /I/, 

and Wolfe /I/. 

Let the bilinear form which determines the payoff function of a game 

have an mxn-matrix A (thereby we assume that the polyhedra of strategies of the 

players are located in m- and n-dlmenslonal vector spaces respectively) and 

the polyhedra of strategies by given by their edges, i.e., by systems of ineq- 

T   T 
ualltles of the form BX ^ b , YC ^ c (here B Is a kxm-matrix, C an nxl-matrix, 
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and a and b are k- and 1-vectors respectively; k and 1 obviously denote the 

numbers of edges of the strategy polyhedra) . Then the optimal strategy of player 

I can be obtained as a part X of the optimal solution CX,V) of the linear 

programming problem, 

BXT < bT, 

-AXT + CVT - 0, 

V > 0, 

and, similarly, the optimal strategy of player II as a part Y of the optimal 

soltulon Of,U) of the linear programming problem 

YC > c, 

-YA + UB - 0, 

U ^ 0. 

8.    Polyhedral games appear sometimes in the form of games with linear 

constraints, I.e., of such matrix games where the players can not apply all 

their mixer1 strategies, but only those whose probabilities are subject  to some 

linear Inequalities.    In this case, the space of pure strategies of the players 

in the polyhedral game obtalneJ will be a convex polyhedron located In the 

simplex of all its mixed strategies of the original matrix game. 

As a simple example which is, however, of principal Importance, we 

show a matrix game where player 1, according to some considerations known to 

his opponent, plays in any of his mixed strategies the first pure strategy at 

least as often as the second,  the second at  least as often as the third etc. 

That means,  that any mixed strategy x -   (x.,   ...,  x )   feasible for him, has 
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to satisfy  the conditions 

x,   > X2 > x, >   ...   > x   . 1—    '=3= —n 

In the given case,  the Inequalities describe a smaller simplex within the 

simplex of axl mix^d strategies of player 1 and therefore the payoff matrix 

of  the new game can be described without difficulties. 

§2;    Infinite Antagonistic Games. 

1.    Infinite antagonistic games ( as well as all antagonistic games) 

are given by defining spaces A and  B of strategies of the two players and a 

payoff  function H on the product A x B.    Therefore,   It  Is natural to write 

any such games as a triplet  <A,   B, H >   .    The maximln principle of behavior 

of players in antagonistic games completely characterizes their behavior from 

the point of view of the maximization of the mathematical expectation of the 

payoff.    At the same time,  if a game has many solutions   (equivalent in the sense 

shown) ,   then the question arises as  to which of  them is  the best with respect 

to some other, additional point of view.    As such a by-prlnclple of optimal 

behavior,   Buck 111 has proposed  the best exploitation of mistakes by the 

adversary.    The same criterion has been examined by Huyberechts /I/; she has 

analysed a principle based on the minimization of a characteristic of deviation 

of  the payoff  function from the value of the game. 

The maximin principle of behavior of players does not depend on the 

cardinality of  the sets of  the players'  strategies.    Therefore  the transition 

from matrix games to the  infinite antagonistic games does not cause any con- 

ceptual,   purely game-theoretical,  difficulties.    The question of  the existence 
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of the value of a game and Its solutions, however,  look different when passing 

to the Infinite case. 

2. As we know. It Is advisable In games of strategy to employ mixed 

strategies,  I.e., probability distributions on the sets of pure strategies of the 

players. However,  In order for the examination of mixed strategies In a game(A,  6, H) 

to make sense,  the existence of the payoff, under conditions generated by any pair 

of such strategies of the players.  Is necessary.  I.e.,  the Integral 

ff H(a,b)dF(a)dG(b) 
AB 

must exist for any pair of mixed strategies F and G. 

This question Is substantial because of the following reason: 

The examination of the probability measure F, on the set A Itself, 

signifies a preliminary Introduction on   A of a b -algebra 6C of subsets measurable 

by F. Likewise, the examination of the measure G Is connected with the (? -algebra iJ 

of subsets of B measurable by G. The examination of  the Integral   (3)   Is connected 

with the   O -algebra   «L of subsets generated by all cartesian products of  the 

form of K x L, where KG #• and L € ^6*.    If  the payoff function H Is measurable 

on the  0  -algebra   J^ ,   then the Integral   (3)   does exist. 

3. The prototype of   numerous existence theorems for Infinite antagon- 

istic games Is Vllle's theorem /I/ on the strict determlnateness of games on the unit 

square with a continuous payoff function.   In fact,   In proving this theorem,  the 

only fact used Is that  the segments of strategies of the players In their usual 

Euclidean topology are conditionally compact spaces*''  and the payoff 

*'  A space Is called conditionally compact   ( In another terminology,totally bounded^ 
If from any Infinite sequence of Its elements a sub-sequence can be chosen that 
converges to an ele-ent of this space. 



-85- 

function is continuous in this topology. 

Thus,  it turns out  to be quite essential what topology  (or in 

particular, what metric)  has been assumed on the strategy sets of the players. 

4.    Obviously,  the distance defined between strategies has to 

reflect the distinction between them.    This distinction can be purely "phy- 

sical", describing the difference between them as activities actually realized 

by the players, but a player's choice of strategy is made not on the basis 

of  its external, "physical" characteristic, but for  the sake of the maximiz- 

ation of his payoff. 

Wald HI has introduced an intrinsic metric   (which may be called 

also uniform or Chebyshev's metric;  Wald himself has sometimes called it also 

Helly's metric)  on the sets of strategies, defining in the game \ A,   6, H^ 

for any a', a"6 A 

Q   (a' j  a") 
A » sup  | HCa'.b)  - H(a",b)   | 

beB 

and analogously for the space of strategies of the second player. Obviously, 

in the usual (intrinsic) topology, the payoff function is continuous In each 

of Its variables (i.e., in the strategies of each player). 

Letdfandaj be o -algebras of subsets of A and B generated in the 

usual topology by open subsets of the spaces A and B.  Denote by C, the 

smallest © -algebra which contains any subsets A x B of the kind K x L, where 

Kfr CX and L £■ *" . As Wald 111  has shown, the payoff function H Is always 

measurable on £ If at least one of the spaces A and B is separable In its 

usual topology. 
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Wald has proved 12/  the strict determlnateness of Infinite antagonistic 

games where the strategy spaces of the players are conditionally compact In 

their usual topology (it is remarkable that from the conditional compactness 

of the strategy space of one player, follows the conditional compactness of 

the strategy space of the second player). He has ascertained that If, Instead 

of the conditional compactness of strategy spaces, their compactness Is required, 

then this theorem can be strengthened: Instead of the strict determlnateness, 

the existence of optimal strategies of players can be confirmed.  For all Its 

seeming Intuitiveness, this result is extremely subtle and non-trivial. 

5. Unfortunately, In several cases the usual topology turns out to 

be too "rough". For Instance, if in a game on the unit square, the payoff 

function is discontinuous in every point of the diagonal of the square (In 

remaining points it may be also continuous), then the distance between any 

two points is larger than a fixed positive number such that the strategy spaces 

, of the players in the usual topology consists everywhere of Isolated points. 

Therefore, along with the usual topology, other methods of topologlzing the 

strategy spaces of the players are also utilized. Karlin 111  has Introduced 

a weak topology where the sequence of strategies fp ^2 0^ one of t^e 

players (let it be the first) is convergent to the strategy f, if for any 

strategy g of the second player 

11m H(fn, p) - H(f, g). 

It is clear that under   conditions of a weak topology,  the necessary 

properties of  the space of strategies are achieved for broader conditions 

concerning the payoff function,  than under conditions of  the usual topology. 
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Therefore, the examination of the weak topology results In stronger assertatlons. 

In particular, Karlin has proved the strict deteminateness of the game on the 

unit square, if the points of discontinuity of the payoff function coincide with 

the diagonal. 

A very general theorem on the existence of values of antagonistic games 

has been proved by Wu Wen-tzun 111. 

6. Yet since the time of Vllle's paper /I/, examples of antagonistic 

games have been known which have no values. So the game has no value where 

the sets of strategies of the players are sets of natural numbers and the 

payoff function is defined by the relation 

H fc,n) - 

A natural approach to games of this type consists In a further extension 

of the concept of strategy which Includes the concept of mixed strategy as a 

probability measure on the sets of pure strategies. This approach leads to 

employing finitely additive measures on the sets of pure strategies as new, 

generalized strategies, of the players. The set of finitely additive measures 

turns out to be sufficiently universal: In finitely additive measures as 

strategies every game with a measurable bounded payoff function has a value. 

The idea of this result comes from the paper by Karlin /I/, and the strict 

proof belongs to E.B.Yanovskaya 111.    In her paper 111  she began for the 

first time to examine games with unbounded payoff functions. 

wmm m 
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7. Except for existence theorems,  there are perhaps, no other propos- 

itions In game theory that are true for all games from sufficiently broad classes, 

Moreover,  even In the several examples of Infinite games  for which some non- 

trlvlal results have been obtained,  the sets of strategies are either subsets 

of finitely dimensional Euclidean spaces   (or of probability measures on such 

spaces)   or sets of finitely dimensional    vectors each component of which is a 

bounded function defined on a given subset of Euclidean space.    Games on the 

unit square obviously belong to the first of these classes.    To them also 

the largest number of papers is dedicated. 

8. Obviously, every matrix game can be considered as a polyhedral game 

and thereby as an infinite one.    Conversely,  the reason why the solution of 

polyhedral games is relatively so simple,  is that every such game is determined 

by a finite number of parameters. 

The next games, according to their complexity, are those on the unit 

square where the payoff function   H Oc,y)   is one of the form 

n 
Zr   Ws. (y) (4) 

1-1 1 

Such games are called separable.    From the point of view of the math- 

ematical expectation of the payoff,  every mixed strategy F of player I  in a 

separable game with payoff function   (A)   can be described by its moments 

1 
/ r   60  dF 6c) 

0      i 

(the same holds also for player II. Therefore, mixed strategies in a separable 

game with payoff function (4) can be described with equivalent accuracy by n 

HIM 
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parameters. Properties of separable games have been examined In papers by 

Dresher, Karlln, and Shapley /l/.Dresher and Karlln /I/, and also Gale and 

Gross /I/. 

An important stimulus for the development of the theory of separable, 

and particularly, polynomial games, has been the hope that with the aid of such 

games one could succeed in approximating arbitrary continuous games on the unit 

square.  This hope did not come true however, for first the polynomial games 

themselves turned out to be extremely complicated and, secondly, the convergence 

of the polynomials to the continuous functions is, generally speaking, pretty 

slow. A systematic exposition of results obtained for this class of games is 

contained in Chapter 11. of Karlin's monograph /3/. 

9. A great number of investigations have been dedicated to games of 

timing. A natural interpretation of these games as "du«ls", consists in the 

following. Let us suppose that each of two opponents can fire at his adversary 

in instant t€[0,l], where the accuracy of each player Increases with time. A 

sensible consideration is that the player should fire sufficiently late (in order 

to fire with the greatest probability of a hit) , but not too late (because his 

adversary can go before with his shot and kill him). 

Several modifications of games of timing have been examined in numerous 

articles. Shiftman /I/, for the symmetric case, and Karlln /I/, for the general 

case, have reduced the finding of optimal strategies for players in games of 

timing to the solution of associated integral equations, and have found a way 

of solving such games. A detailed exposition of most of the results related to 

this class of games is contained in Chapter 13 and 1A of Karlin's monograph /3/ 
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(especlally see the notes and references to these chapters) . 

Games where one or both players have to choose several Instants of 

time belong also to games of timing. Such a game can be Interpreted as a 

duel with many shots. These games have been treated by ELackwell and Glrschick 

/I/, Kestrepo /ll,  and others. 

10. Games where all situations split Into two classes, also belong 

to a class of simpler games on the unit square: Advantageous ones for player I, 

where he receives a payoff equal to one, and disadvantageous one for him, where 

his payoff Is equal to zero. It can be assumed that the payoff functions In 

such games are characteristic functions of some sets. 

One example of such a game with a military tactical Interpretation has 

been given In Dresher's book /I/. For further examples of technical content 

see N.N.Vorob'ev's paper /7/. 

11. Extremely Interesting are those games where the strategies of the 

players are functions. Here, one has to take Into account that the functional 

nature of strategies does not yet contradict the normal form of the game. For 

a game In normal form the Instantaneous choice of strategies as a whole is 

characteristic, even If an entire function Is chosen. 

In a broad class of games of this type, the player selecting a function 

Is called machine-gunner (In foreign literature also bomber). The function 

selected can be Interpreted as the Intensity with which he fires at every instant 

of time. Obviously, the strategy of the machine-gunner can be regarded as an 

extreme case of the strategy of a player choosing only a few Instants of time. 

If his opponent chooses the time from an Interval, then he is called sharpshooter 

^^^MMMi^M^MM 
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(correspondJngly - fighter). The analysis of games of this class requires 

the use of the Neyman-Pearson /I/ lemma, well-known from statistics. For a 

detailed examination of these games and the history of the problem, see chap- 

ter 16 of Kanin's monograph /3/. 

12. A somewhat distinct place Is occupied by games of the Poker type, 

treated In detail In § 19 of the monograph by von Neumann and Morgenstern. In 

these games, the strategy of the player Is In fact not a concrete decision, but 

a function whose values are such decisions and whose domain Is the set of states 

of Information. Therefore, It would be natural to refer to Poker as a dynamic 

game. Fundamental results concerning the theory of games of this type are given 

In chapter 17 of the monograph by Karlln /3/. 

§ 3; Cooperative Theory. 

1. From the point of view of principles, antagonistic games have been 

examined exhaustively. The transition to a broader class of non-coalltlon games 

has been outlined, but not developed further, by von Neumann and Morgenstern, 

who have given a general definition of such a game, yet have not formulated 

general principles of rational behavior for players In such games. They have 

reduced the problem tc the study of the characteristic function of a game, i.e. 

in the last resort to a system of antagonistic games. 

This reduction, for all its conceptual profundity and analytical ele- 

gance, turns out to be substantially imperfect because it does not reflect all 

features of the original game. Very convincing evidence of the imperfection of 

this theory is seen In an example given by McK.insey /l/:Player I, choosing one of 

his strategies, receives the payoff 0, and his partner, player II, the payoff 10; 
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if I chooses his second strategy he obtains -1 000 and II obtains 0. Here, 

obviously, vCl) s 0; vCII) ■ 0; v(I,II) = 10.  If we limit ourselves to the 

examination of only the characteristic function, then we Inevitable omit some 

substantial features of the situation. 

Besides, the classical cooperative theory of von Neumann and Morgnestern 

assumes the presence of Individual, unrestrictedly transferable, and quantitatively 

Invariant utility (the sole passages where the authors have attempted to 

abandon this assumption are § § 66, 67, in particular see 1.66.3).  Wiat has 

been said has predetermined the possibilities  (to a considerable extent now 

already realized) of the whole hierarchy of generalizations of von Neumann's 

and Morgenstern's original cooperative theory. 

We note above all, that it is not possible to retain the unrestricted 

transferablllty of utility in games, but abandon Its invarlance. As Aumann /!/ 

has shown, If at least three players are participating in a game, then from the 

unrestricted transferablllty of utility follows its linearity. Thus, if one 

abstracts from modifications without principal significance, von Neumann's 

and Morgenstern's theory covers all cases of unrestrictedly transferable utility. 

The first possibility of generalization is connected with the development 

of the classical cooperative theory without transferable utility (i.e., without 

common "money" which is of "equal utility" for all players) but with side payments 

which are carried out by means of non-monetary goods; here, in fact, a transfer 

of utility takes place, but there does not exist a common scale of account for 

utilities and, a fortiori, the total increase in utility need not equal zero.  The 

following step, in the direction of a generalization of the classical cooperative 

theory, completely abandons transfers of utilities, but maintains the general 
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method of description of games that remains of the charactsrlstlc function. 

The corresponding theory Is called thoery of games without side payments. 

Further, It is possible to revert to the purely strategic aspect of a game 

and to take Into account that the expected payoffs of the players (or coalitions) 

are not primary data, but are calculated on the basis of the values of the 

payoff functions In various situations.  On this level of generalization, the 

theory of non-coalition games has emerged. 

Eventually, if one assumes that the elementary participants in the game 

(i.e., the parties to which the payoffs in various situations are ascribed) 

are coalitions which may Intersect each other, then we obtain the broadest 

class of games, the class of coalition games. 

Non-coalition games are often called non-cooperative. At this 

terminological distinction we have to halt because this is not a question 

of what kind of associations of players is to be called coalitions and which 

cooperations,  but a question of the theory itself. If we extend the class 

of cooperative games studied, then we abandon the cooperative aspect as a 

constitutive form of rational actions of players, thereby coming to the non- 

cooperative games. If, conversely, we start from the most general, the coalition 

games, and limit ourselves to the case of one-element (or what is in fact the 

same, pairwise disjoint) coalitions, then wa come to the same class of games 

which may now, however, naturally be called non-coalition games. 

Ve  turn now towards the exposition of fundamental results obtained at 

each stage of these generalizations. For convenience, we divide the entire 

material Into two parts. A great number of positive inquiries into these problems 

as well as a critical examination of several approaches to them is contained in 
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the monograph by Luce and Ralf fa /I/. 

2. The cooperative theory of coalition * games has been elaborated 

by von Neumann and Morgenstern most thoroughly and carefully. About two-thirds 

of the total volume of the monograph Is dedicated to It. Besides, this theory 

has brought forth an abundance of propositions which allow for a natural inter- 

pretation In economic and sociological terms. Therefore, one would have expected 

that In the following years the cooperative theory would have made considerable 

progress. 

These expectations have been fulfilled only partially. Although the 

papers aealiu^ with questions of the cooperative theory are mathematically subtle 

and original, their number has been, for a long time, rather small and has 

increased only recently.  This circumstance has been caused by a few reasons. 

The first concerns the glaring lack of tradition in the entire set of 

game theoretical problems. This can be explained by the fact all "traditional" 

mathematical theories concern themselves with the several aspects and variants 

of the motion of physical bodies in physical space, whereas game theory deals 

with aspects of rational and expedient behavior.  This also explains the lack 

of tradition of the mathematical apparatus used in game theory.  But if one has, 

nevertheless, succeeded in connecting anatagonistic games with classical problems 

of linear algebra, functional analysis, atvi  integral equations, or with the not 

s o  classical but sufficently intuitive convex pclyhedra,  then the investigations 

*'  Translator's note;  In the original Russian text the author speaks here of 
non-coalition games", which is, however, obviously a misprint. 
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of cooperative thoery are based only on Intricate elementary combinatorial 

arguments which are of a very special nature In every case. 

The second is the vagueness of the fundamental concept of game-theory - 

of optimal behavior under conditions which go beyond the scope of the purely 

antagonistic conflict as well as the difficulties (lest to say impossibility) 

of an experimental examination of its axioms.  With this Is connected the 

incompleteness of the cooperative theory concerning the choice of some solution 

from many, and the choice within the solution of a certain imputation. 

Thirdly, antagonistic games, from the very beginning, have turned out 

to be very closely connected wiLn applications, both Inner mathematical, theore- 

tical (for Instance, to mathematical statistics) and applied ones (military 

tactical problems). Therefore, persons who have occupied themselves with game 

theory have been stimulated by those branches displaying more determlnateness 

without having to do immediately with the cooperative theory. 

In view of what has been said, the cooperative theory presently shows 

a pretty variegated picture.  We will pay attention only to some of the most 

Important phenomena. 

3.  Until recently the question of the existence of solutions for 

arbitrary cooperative games has been open. Lucas's 111  example has given a 

negative answer to this question.  Therefore new problems have arisen: The 

classification of insoluable games in accordance with the causes of their 

insolubility as well as the search for a new ("generalized") concept of solution 

that would exist for every game.  Until the latter has been carried out, the 

principles of rational behavior ( and solutions in the sense of von Neumann - 

mm 
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Morgenstern are something like that, in spite of their vulnerability for 

criticism) will prove to be limited. Games that are not covered by the 

exactly formulated principles, slip from the domain of mathematics into the 

domain of psychology, remembering once more Borel's point of view quoted 

in 1.4.2. 

At the same time, the search for the possibly broadest classes of 

games which do possess solutions remains topical.  For the time being, only 

single, comparatively special, results have been obtained in this direction. 

So Gillies 111  has shown that a "positive fraction" of all games 

have solutions and a "positive fraction" of all non-zero-sum games have unique 

solutions. 

An example of a contrary character has been constructed by Kalisch 

and Nering /I/.  They have examined games with an infinite (countable) set of 

players I. Imputations ( a^, o^, ... ) of such a game, if it is given in 

-1-0-reduced form, have to fulfill the following relations 

a, = -1 for every lei 

1  [aj < oo 
iEl 

Z a. - 0 
i£l 

The game Is called finitely decreasing, if for any coalition S'C I and player 

1<S I 

v ^) £ v $ - 1) 

(it is clear, that a game with a finite set of players cannot be a finitely 
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decreaslng one).    A proof has been given that for finitely decreasing games 

no solutions exist. 

The example of  a game which has no solution constructed by Lucas  /I/ 

has a very artificial character.    In this example 

I = {1,2,3,4,5,6,7,8,9,10}   , 

vCD  = 5; v(l,3,5,7,9)  = 4; 

v(l,2)   = v(3,4)   = v(5,6)  = v(7,8)   = v(9,10)   = 1; 

v(3,5,7,9)  = v(l,5,7,9)  = v(l,3,7,9)  - 3; 

v (3,5,7)   = v (1,5,7)  = v(l,3,7)  - 2; 

v (3,5,9)   = v (1,5,9)   = v(l,3,9)  = 2; 

v(M,7,9)   = v(3,6,7,9)  = v (5,2,7,9)   = 2; 

v ($) = 0 for any remaining S C. I. 

(The given characteristic function is not superadditive; in respect of what 

has been said in III.11.1, however, from the point of view of solutions this 

circumstance is not essential) . 

4. The variety observed, in the structures of several solutions of 

different games, is, as it has turned out, completely regular. Shapley /3/ 

has found out that whatever form the closed set I in n-dimensional Euclidean 

space may have, there exists a (non-zero-sum) n+3-person game where one of the 

solutions splits into two closed parts such that one of these parts is "similar" 

to the set I. 

Thus, the individual description of solutions of games beyond the class 

of non-zero-sum four-person games (discussed in chapter VII. of the monograph), 

appear to be aimless. 

■MMMHHMHHiMMM 
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General propositions about solutions of arbitrary games are of a 

rather limited character. For instance. Gillies 111  has pointed out that 

imputations belonging to some solution cannot be located "sufficiently near" 

to the corners of the simplex of imputations. 

Shapley /3/ has raised the question of the existence of solutions 

which are infinite but only countable sets of imputations depending also on 

the number of players, and the existence of an upper bound for the number of 

Imputations in a finite solution. Galmarino /!/ has ascertained that four- 

person games have no countable solutions and that for finite solutions there 

exists the upper bound required. 

5. The impossibility of giving the general properties of solutions 

valid for all games, leads in a natural way, to the separation of different 

classes of games and to the study of their respective solutions. The first 

step in this direction has been made in the monograph by von Neumaan and 

Morgenstern, and a large number of papers have emerged afterwards dedicated 

to specific games characterized by particular intuitive characteristics. The 

formal description of such a class of games consists in the following. 

Let the set of players I be given in the form of a union PU Q of 

non-intersecting groups P (sellers) and Q (buyers) where for any coalitions S 

(market) 

vCS) = min {| SH P | , | S H Q |} 

(i.e., intuitively the payoff of the market is equal to the number of contracts), 

Shapley has described a class of solutions for a market model including 

the unique symmetric solution (in every imputation of which all components corr- 
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espondlng to the buyers as well as all components corresponding to sellers 

are equal to each other) *'. 

6. An important class of games, the so-called "quota games", has been 

investigated by Shapley in his paper /2/.  By quota in a game with charact- 

eristic function v, we mean a vector ( w,, ..., w ) having the two properties: 

v(iU j) =  Wj + CO. for any 1, j € I, 

a)1 + ... + a)n = v(I) . 

It turns out that in order for a game (characteristic function) to 

possess a quota, it Is necessary and sufficient that for any four distinct 

players  i, j, k, 1 

v (i U j) + v (k U 1) - v (1 U 1) + v (j U k) 

holds, and besides that 

I    v(i U j)   -  2(h - 1)  vtt). 
i*l 

l.jCI 

From this follows, among other things, that any zero-sum four-person game 

possesses a quota. Shapley has proved, that every quota game possesses a 

solution (see i.60.4) and has given one of these solutions in an obvious way. 

*' Thus, Shapley /4/ has systematically examined one of the cases of market 
models outlined by von Neumann and Morgenstern In §64 of their monograph. 
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Thls solution Is based on the domination of two-player coalitions. 

This Idea cf the quota, as well as results obtained by Shapley, have 

been generalized by Kallsch /I/.  In particular, he has introduced an m-quota 

as a vector ( O),, ..., W ), such that v ($) = ZüK for any m-element coalition 
l£S 

S and has pointed out the necessary and sufficient conditions for the exist- 

ence of a solution of a game based on this m-quota. 

7. Much interest has been attracted by simple games.  Zero-sum 

simple games have to be proper (i.e., the coalition and its complement cannot 

be winning at the same time) and strong (i.e., the coalition and its complement 

cannot be losing at the same time). Going beyond the scope of zero-sum games 

leads to the possibility of emergence of improper and (or) non-strong simple 

games. 

In a non-strong game, the losing coalition together with its complement 

is said to be "blocking". Elaborating Ideas outlined by von Neumann and 

Morgenstern in §53 of their monograph, Richardson /A/ has proposed to discuss 

games as projectIve spaces, where points are regarded as players and pairwise 

Intersecting subspaces of the least dimension as winning coalitions. He has 

obtained a series of results concerning the existence of blocking coalitions 

where the number of players has a certain arithemtlcal structure. 

If a simple game has a transitive group of automorphisms, then it is 

said to be homogeneous. Not every number of players can participate in a strong 

homogeneous game. Ishell HI  has shown that for every odd m, one can find an 

h such that for k > h strong homogeneous games with 2^n players do not exist. 

Extraordinarily Important, interesting, and promising is the study of any kind 

  ■ ■ ■  ■ 
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of operations on sets of games allowing the construction of complicated and 

manifold games from single, comparatively simple, and uniform components. 

Compositions of games introduced by von Neumann and Morgenstern (in chapter IX) 

belong to operations of this type.  For the time being, one has not succeeded 

in discovering other sufficiently natural constructions applicable to arbitrary 

games. Shapley /6/ has, however, Introduced the concepts of sums and products 

of simple games. 

Let F (Pj, W..) and F (P , W) be two simple gar^s in 0-1-reduced form 

with non-intersecting sets of players (here and further P,, ?2  and P are the sets 

of players in the games, W-, Wj and W are the sets of winning coalitions respect- 

ively; the characteristic functions of these games are denoted by v,, v„ and v) . 

A game is called the sum of two games 

rcPi» %)   «  r(p2, w2) - rcp.w). 

If P = P1 U P2 and  for any S C P 

vcs) = v1(sn Pj) + v2cs n Pj) 

(where contrary to the composition the addition is meant in Boolean sense). 

Similarly, a game is called the product of the same game 

r(P1, w1)   0  r(P2, w2) - r(p,w) 

if also P = P11J P2 and for any SC P 

vCS)   = v1C5 OP^  v2($n P2) 

It  turns out  that  the constructions  introduced are  in some sense invariant with 



-102- 

rpspect  to  the concept of a solution:     The solutions of  sums and products can 

be obtained  In a certain way from the solutions of  their components. 

A step beyond the scope of  simple games has been made with a construction 

by Owen /I/ which has been called  the  tensor composition of games. 

Several classes of simple games have been Investigated  too.    So,  already 

von Neumann and Morgenstern   (In Chapter X) have discussed different kinds of 

majority games. 

Bott  /I/ has Introduced majority   (n, k)-games where n/2<k<n assuming 

|s|<k 
vCS) 

|S|>k, 

and has found a unique class of solutions passing from one to another for 

automorphisms of the game. Further results for this class of ga^es have been 

obtained by Gillies /I/. 

8. Along with the solution of a gam?, a "reasonable" class of Imputations 

is represented by the c-core, examined by Gillies /2/, consisting of all imput- 

ations not dominated by any imputation. The "reasonableness" of the c-core Is 

determined by the property that it consists of all imputations ( ou, ..., at ) •- - in 

such that 

I ct  > v6) ^ 
l£S 

*' Translator's note; In the original Russian text this condition Is given In 
the form of a strict inequality, Z a. > vCS), which is, however, obviously a 
misprint. l£S 
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for any coalition S (I.e.,  if an imputation is In the core,  then no coalition 

is effective for  it) .    Therefore,every coalition is satisfied with an impr.tatlon 

belonging to the c-core and will not make use of its own strategic possibilities. 

It  is clear  that the c-core  is a closed, bounded,  and convex set contained 

in any solution of  a game.    For many games,  however,  the c-core turns out to be 

empty.    Gillies 111 has shown that for the existence of a solution of a game 

coinciding with the c-core, it  is sufficient that all values of  the characteristic 

function of a game are smaller  than 1/n, where n is the number of players.    This 

result has been subsequently strengthened by O.N. Bondereva /I/, who has begun to 

systematically use linear programming in the theory of cooperative games. 

9. An essentially different approach to cooperative games has been 

offered by Aumann and Maschler  in their remark /I/ which has established the 

rudiments of a new direction in the theory of cooperative games.    This approach 

is based on an examination in the well-known sense of stable outcomes of a game 

at which the players arrive as  the result of a bargaining process with a perfect 

exchange of  informations,  threats, counter  threats etc.    The set of all the 

stable outcomes  is  called the bargaining  set of a game and can be determined by 

solving systems of  algebraic linear  Inequalities.    Fundamental facts forming this 

theory can be found  in the paper 111 by Aumann and Maschler.    Further results 

are contained   in papers by Davis and Maschler  HI and Peleg  /I/.    Some consider- 

ations concerning  this  trend in game  theory can be found  in 0. Morgenstern's 

preface  to the present book. 

10. The researches in the cooperative theory without transferrable 

utility,  but with  side payments,  have not been numerous.    The first attempt of 
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constructlng such a  theory on a descriptive level has been undertaken by 

Shapley and Shublk /I/   (see also    § 10.4 of  the book by Luce and Ralf fa  /I/ 

and the survey article by Aumann 111) . 

11.    The transition from the classical cooperative theory to the 

theory of games without side payments results formally in the generalization 

of  the concept of characteristic function   (see  the survey article by Aumann  111) . 

Let 1 represent the set of players to each of whom corresponds a 

coordinate of Euclidean space E  .    Each coalition S,   a subspace of E,  denoted 

by Eg,  is spanned by the coordinate axes corresponding  to the player of S. 

Points of E      are called payoff S-vectors. 

The fact  that  the value of the characteristic  function for a given 

coalition S has been equal  to v ($)  has signified,  in the classical theory,   the 

possibility of  this coalition    forcing an imputation,   the sum of whose components, 

corresponding to the players of S, has not been smaller than v(S).    Geometrically 

this means that  the set of guaranteed payoff vectors  for coalition S  forms a 

half-space 

I x    < vS) 
IBS 

Fundamentally,  the very existence of side payments allows for distributing  In an 

arbitrary way the entire sum v(S)  among the members of  the coalition.     With 

abandohment of side payments  the picture will change^ especially on this point. 

Let v OS)  be the set of payoff vectors that coalition S  can assure 

itself;    This set will be called the value of  the characteristic function for 

coalitions S.    It is natural to require that the characteristic function satisfies 

the following axioms: 
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1°    v (S)   is a convex,  closed,  and non-empty set   (convexity reflects 

the possibility of mixing  the strategies, closedness - the natural property of 

possibilities,  and non-emptiness -  the fact of participation  in the game) . 

2°    If «vCS),  jcEs and y ,< x,   then jCv (S)    (I.e.,   the set v(S)  possesses 

only a  "northeast" boundary;   intuitively this is sufficiently natural:    If  the 

coalition is capable of  the more,   then it is also capable of  the less). 

3*    For coalition'; S  and T disjoint, 

v OS)  x v CD C     v $ 0 T) 

(This condition generalizes the classical axiom of superadditlvlty of the 

characteristic function:    The possibilities of a union are In any case not 

narrower  than the combination of possibilities of coalitions acting separately). 

We will now detach a certain part of v(I)   adjoining Its "northeast" 

boundary,   i.e.,  for which the following relation holds: 

v (E)   « (»EEL.  / there esists a vector yCH such that y >, x) 

H consists of all those payoff vectors which are feasible due to "external" 

circumstances. 

The pair   (v,H)   is called  a game without side payments. 

12.    According to the analogy to the classical case,  the characteristic 

function  serves as a basis  for  the  introduction of  the concept of  Imputation as 

a payoff  vector being at  the same  time  individually and universally rational.     In 

the given case,   these conditions  of  rationality applied  to a vector x are 

accordingly written as 

x. ^ max v (i) ; 
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there exists no vector yCv Q.) such that y>x. 

The concept of domination of  Imputations is transferred almost  literally, 

from the classical case to the case considered:    An imputation x dominates an 

imputation y, via a  coalition S,  if JCV $)   and x.  > y.  for all  1ES;  an  Imputation 

x dominates an imputation y if x dominates y via some coalition S. 

Domination generates the concept of  the solution,  the core etc., as well 

as all the problems connected with them.    Since the possibilities of games without 

side payments are essentially broader than the possibilities of classical games, 

the construction of many counter examples seems to be easier.    Thus,   the 

question concerning the universal solubility of games without side payments, 

for instance, has been decided in a negative sense earlier than for  the classical 

cooperative games:    Stearns   (see p.9 of the survey article by Aumann /2/)   has 

shown that there is a 7-per8on game with no solution. 

13.    In the construction of a game without side payments from its 

normal, strategic form,  there emerges besides Its usual characteristic function 

(here denoted by v ) ,  describing those payoff vectors which can be assured by 

the members of the coalition, a new function describing those payoff vectors the 

receipt of which cannot be prevented by the other players.    This second function 

also satisfies the axioms of the characteristic function and is denoted by vg. 

The functions v^    and vfl    are, in a well-known sense, analogous to the maximln up 

and minimax payoffs. 

In the classical cooperative theory   (i.e., with side payments and 

transferrable utility) , both functions v      and v„    coincide.    In his only, but 

very substantial paper /I/, Jentzsch has investigated further possibilities 

for coincidence of the functions va and Vg. Games where va - Vg he has called 
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clftar;  moreover, he has presented  examples of games which are not clear and has 

asserted  that for  the clearness of an arbitrary game with a given set of 

participants,  it is necessary that  each coalition possess some "social utility 

function"  for side payments.     Jentzsch h?s remarked   (but not proved)   that the 

suggested  logarithmic   Bernoulli scale of individual utility leads to such a 

social utility function. 

14.    As in the classical case,  the multitude of  imputations in a 

solution   (as well as in the core)   and of solutions of a game, reduces the 

normative value of the solution,  and there arises the question of selecting 

for every game, some unique imputation which could be, with sufficient reason, 

regarded as "fair".    For the classical cooperative theory,  the Shapley value 

vector   (see II.6.3)  has turned out to be such an imputation.    In paper HI he 

(Shapley)   has succeeded in extending the corresponding definition to the case 

of games without side payments.    Some further results concerning games without 

side payments as well as a detailed bibliography have been given in Aumann's 

survey article /2/. 

§ 4:    Non-coalition and Coalition Games. 

1.    The classical cooperative theory, as well as the theory of games 

without side payments deal,   fundamentally, with the behavior of a coalition under 

conditions of  its encirclement,  reducing most questions to the antagonistic 

description or at least  to antagonistic analogies.    It is clear that for a more 

complete  inquiry Into game situatior», above all, more general principles of 
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ratlonal behavior of players are necessary. 

The decisive step In this direction has been done by Nash /2/ who 

has extended the basic Idea of the maxlmln principle to arbitrary non-coalition 

games. His consideration consists in the following. 

Let 

r = <I, (S }    { H^  > 
1EI       i£l 

be a non-coalition game   (where 1   is the set of players, S    - the set of all 

strategies of player  1, and H.  - his payoff  function).    It is natural  to assume, 

as the fundamental guiding principle of  the behavior of a player  in such a 

game, the following principle of realizablllty of the aim:    Actions of players 

are considered to be rational if  the situation being the aim of  their common 

efforts is realizable,  i.e.,  if no one of  the players is interested in disturbing 

this situation. 

A more formal principle of realizablllty of the aim looks like the 

following. 

If s is a situation in a game T, and SJ is an arbitrary strategy of 

player 1, then by s||s. is denoted the situation obtained from the situation 

s as the result of  the replacement of player i's strategy in s by his strategy 

V 
The situation s* in a game,   is acceptable for player 1 if for any of 

his strategies s.   the Inequality H. (s*| |s.) ^ H. (s*) holds*^ .    The situation is 

in equilibrium If  It is acceptable for each player. 

*'    Translator's note;    In the original Russian text the inequality is writt 
conversely   ( ^ )  what is obviously due to a misprint. 

en 

■ 
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If one regards the process of playing as the players' selection of 

strategies on the basis of a preliminary agreement, then in particular, in 

equilibrium situations and only in them have the players no reasons of their 

own to break their commitments. 

It is not difficult to examine that if the non-coalition game T  turns 

out to be antagonistic, then the principle of realizability of the aim changes 

into the maximin principle, and the equilibrium situations turn out to be 

saddle points. 

2. While formally the equilibrium situations play the same role in the 

theory of non-coalition games as saddle points do in antagonistic games, their 

normative meaning is essentially less: The player's knowledge of his strategies 

that are included in equilibrium situations does not yet assure him the possibility 

of realizing the optimal way of acting. This is understandable since the non- 

antagonistic games are, generally speaking, not exhausted by their strategic 

aspect.. 

As an example, one can give a non-antagonistic two-person game, well- 

known under the name "the battle of the sexes". Here every player has two pure 

strategies and the payoff function i^ described by the following tables: 

Payoff of Payoff of 
player 1. player 2. 

1     0 

0     2 C :) 
Obviously, the players' simultaneous selection of their first or second strategies 
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leads  to  equilibrium situations.     Thus,   in the given game every pure strategy 

of a player is in equilibrium   (and, by the way, also one of his mixed strateg- 

ies) . 

At the same time,   the equilibrium situations obtained here are obviously 

not equal;    The first player  should evidently prefer the equilibrium situation 

formed by the first pure strategies and the second player those formed by the 

second ones*'. 

Apparently,  the choice of  one of these equilibrium situations can be 

decided only after negotiations between the players. 

In this example, we hit again on our inability to reduce the cooperative 

aspect of  the problem to the strategic one.    The canonical choice among many 

equilibrium situations of an arbitrary game is a complicated problem.    Interesting 

approaches to these questions are contained in papers by Harsanyl 111 and also 

Krelle and Coenen 111. 

3.    Fairly general principles of rationality of agreements between the 

players have been offered by Nash  in his paper 111. 

Every agreement between two players leads to their obtaining of some 

payoffs r.  and ^ respectively.    This means that every agreement   is character- 

ized by a pair of numbers   (r^, r^)   and can be, therefore,  represented by a 

point In the plane.    We assume that R is a set of points corresponding to all 

possible agreements.    Among all possible outcomes of agreements one is singled 

*)    Translator's note;    This  is evidently a mistake:    The first player will 
prefer the equilibrium point made up of the second strategies of each player, 
and the second will prefer the equilibrium point formed by the first strategies 
of the contestants. 



-Ill- 

out at which the players arrive if the attempt to core to an agreements 

fails. In this case, the payoffs of the players are those quantities 

which the players would obtain by themselves.  The point r* ■ (r*  r") , 

corresponding to such an outcome, is sometimes called "the status quo". 

Let F (R, r0) be a function defined on the set of all bargain- 

ing situations, the values of which are payoff vectors (pairs) . This 

function determines which payoffs have to be considered fair for the 

players under the conditions of every bargaining situation. 

In accordance with Nash, it is natural to require that the fair 

arbitration scheme fulfils the following axioms: 

(1) Effertivity: 

FOl,  r0)    >    r' 

(in other words:  The arbitration is fair  if no one of the bargaining 

partners will  lose by it) . 

(2) Symmetry:   if  the se'. R is symmetrically located with res- 

pect to the bisecant, with an angle of coordinates r. « r  , and the 

components of  the vector r0 are equal,   then the components of  the vector 

F (Jl,  r0)   have  to be equal  too   (players  in an equal position in the bar- 

gaining situation  should obtain equal  payoffs). 

(3) Pareto optimallty:  In the arbitration F0l,r8),  both players 

cannot simultaneously Increase their  payoffs   (this property of  the arbi- 

tration has nothing  r.r do with  Its fairness,  but with its general  ration- 

ality: A rational  bargain cannot be  improved so  that each of  its partici- 

pants Increases has own payoff) . 

(4) Monotony with  respect  to  the domain:  If R    Cl,   ^2 an(* 
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FOl2,   r0)    £    R1,  then F^,   r0)  = T<p.?, r0)        af for a "large" set of 

possible bargaining outcomes fairness requires the selection of a bar- 

gain  in a "smaller" set,   then after  the transition to  the   smaller set  the 

old fair agreement remains valid). 

(5)   Invarlance with respect  to the choice of   the origin and unit 

of measurement: For any positive k-^ and k^ 

R + r 
\0 kj 

r" + r' C1 "h- r0)   + r' 

(this axiom expresses virtually the linearity of implied utility functions) . 

The system of axioms formulated is complete.  In particular the fol- 

lowing theorem holds: If  the function F >=   (F  , F»)   satisfies  the axioms 

(1)  -   (5).   then 

(Fj   (*, r0)   - r») (F2(R. r")  - rp  - max (x1 - rj) (r2 - r»), 
r-frj^.rj) 

CR 

i.e., a fair bargain is considered to be that one for which the product of 

the increases in the player's payoffs with respect to the status quo is 

maximized. 

A detailed critical analysis of this sort of questions is contained 

in the book by Luce and Raiffa /I/. 

4.  The existence of equilibrium situations  in any finite non-co- 

alition game   (of course, generally speaking, In mixed strategies) has been 

proved by Nash /I/. This proof,  as well as von Neumann's first proof of 

the mlnlmax theorem  (the natural generalization of which is the former), 

are based on ^rouwer's fixed point theorem. Contrary to the mlnlmax theorem. 
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however, here one ran hardly hope to find a proof making use of sufficient- 

ly elementary and "sufficiently effective" procedures (like the theorems 

of separability of convex sets). The matter Is that, as examples have 

shown, with increasing numbers of players, one has to carry out irrational 

operations of highest degree in order to find components of equilibrium 

situations. 

Nash's theorem is capable of generalizations for the case of In- 

finite games. Some very interesting examples of theorems of this kind arc 

contained in the book by Burger /I/. 

5. In non-coalition games one usually assumes that the players can 

adopt any probability distributions on the set of pure strategies as their 

mixed strategies. Wu Wen-tzun HI  has examined games where the set of pure 

strategies of every player is given together with some cover, and where 

solely such mixed strategies are admitted which Include only pure strate- 

gies that belong to one and the same element of the cover. Such games he 

has called games with restrictions. In games with restrictions, those situ- 

ations a are regarded as equilibrium situations, where H. (a || s.) ^ H (o) 

for any 1 and all those pure strategies s which belong to an element of the 

cover, the a -probability of which is equal to one. Using very subtle topo- 

loglcal arguments, WJ Wen-tzun has ascertained that a sufficient condition 

for the existence of equilibrium situations in games with restrictions is, 

first, the coherence of nerves of the covers of the strategy sets of all 

players and, secondly, that their Euler-Polncare characteristics are dif- 

ferent from zero. 

6. No general methods of finding equilibrium situations in non- 
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coalltlon games have been known up to now. 

An algorithm for the numerical solution for tlmatrix games has 

been given by N. N. Vorob'ev /I/ and improved by Kuhn HI.  A more practi- 

cal, but not so complete, algorithm is due to Lembke and Howson /I/. 

In solving infinite non-coalition games, one has been successful 

only in some, but not many, cases. A very interesting example of a game of 

"oligopolists", offered in the book by Burger /I/, belongs to them. 

The theory of fair division derived from an ancient problem of 

dividing an asset according to the principle of "one divides - another 

chooses", belongs to the class of non-coalition games. From the game- 

theoretical point of view, Steinhaus (see reports by Knaster and Stein- 

haus /I/) first dealt with this problem. The latest results in this di- 

rection are contained in Kuhn's paper /3/. 

7. To every game, there belongs a collection of utilities for 

wnich the players are struggling. In the classical cooperative theory 

(with transferrable utility), there has been only one such utility for 

all players. In the theory of non-coalition games, there are just as 

many such utilities as there are players, and each player has his own 

utility described by his payoff function. A natural and completely topi- 

cal generalization admitting various interpretations, consists of the 

correspondeu.e of an (obviously non-empty) set of players to any kind of 

utility appearing as some players' goals, where, generally speaking, one 

player may be interested in several utilities. The set of players strug- 

gling for the maximization of one and the same utility, is a coalition 

MBMMlMriMMIM« ■*■ 
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(in particular, a coalition of Interests) . The payoff to every coalition 

is regarded as belonging to it as such, not being subject to any division 

among the members of the coalition.  It is clear that different coalitions 

may also Intersect each other. 

Along with coalitions of Interests, one can also meet In gamer co- 

alitions of actions whose participants are able to exchange information 

concerning the choice of the common strategy of the coalition and, in 

particular, to employ correlated randomized actions. The examination of 

such common randomized actions of intersecting coalitions is complicated by 

the necessity of coordinating the actions of different groups of players. 

This may turn out to be a hindrance for the probability interpretation 

of mixed strategies. Therefore, the "complex of coalitions" cannot be ar- 

bitrary and has to be subjected to some combinatorial conditions. 

A natural extenslou   the principle of realizabillty of the aim 

to coalition games leads to an examination of stable solutions where 

some groups of players are not interested in deviating from their actions 

planned even if some of their partners in the coalitions break their ori- 

ginal commitments. 

In particular, if there is no provision by the rules of the game 

for a "reaction" by the players to a breach of their partner's obligations, 

i.e., if the game actually trrns into a non-coalition game, then the stable 

situations described change into equilibrium situations in the sense of Nash 

(see III.4.1.) . 

The existence of stable situations of this kind has been proved in 

N. N. Vorob'ev's paper /5/. 
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§ 5: Dynamic Games. 

1. The utilization of mixed strategies as optimal decisions, the 

extension of the mlnlmax theorem to various classes of Infinite games, the 

connection of matrix games with linear programming - all this has over- 

shadowed what maybe even deeper ideas contained in the monograph by von 

Neumann and Morgenstern: The theory of extensive games and the coopera- 

tive theory. It suffices to say that until the publication of a volume of 

collected papers /3/ in 1953, no one had returned to these questions. 

(Moreover, in Wald's book "Statistical decision functions" from 1950, the 

game-theoretical side of the problem has been presented by games in nor- 

mal form in spite of the whole essential "extensiveness" of the problem.) 

We note now, that after the publication of von Neumann's and Mor- 

genstern's monograph, these questions have been found in a completely dif- 

ferent stage. The cooperative theory has been elaborated very deeply: 

Its results have concerned the central questions of the theory and some 

particular cases have been analysed in exhaustive detail. The theory of ex- 

tensive games has been limited to a cumbersome system of definitions and 

the theorem on games with perfect information (well-known, moreover, in its 

basic features from the time of Zermelo's /I/ paper on chess). 

2. Of so much greater interest is Kuhn's paper /I/. Here, above 

all, a natural and transparent definition of the extensive game has been 

formulated including the precisely defined concept of strategies of the 

players as functions on the sets of their information states (intuitive- 

ly, - on the families of sets of positions indistinguishable for the player 
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at the corresponding instant; these sets of positions are called informa- 

tion sets). Besides that, in this paper the "inner" structure of that un- 

certainty which the player has to cope with in the extensive game has 

been elucidated. As such, as an "atom" of uncertainty Kuhn has chosen the 

fact of "overlaying" of an information set by another one. Intuitively, the 

"overlaying" of an information set U by an infonation set V, means that a 

player in the set V*) does not know whether the game has earlier taken place 

in the set U and what decision has been made in U (apparently by that player 

who was to move in U) . Obviously, in games with perfect ir.formation where 

every information set consists of a unique position, no Information sets 

are overlaying others. 

3. Generally speaking, the "more" overlayings there are among the 

information sets in a game, the "greater" the necessary mixing in optimal (or 

if we have to deal with general non-coalition games, in equilibrium) strat- 

egies. Therefore, if the player possesses perfect recall, i.e., if his own 

Information sets do not overlay each other, then the player can confine him- 

self to behavioral strategies, i.e., to such mixed strategies where his ac- 

tions are mixed independently in different information sets. A further de- 

velopment of these ideas is contained in the paper by Thompson 111  and by 

N. N. Vorob'ev /2,6/. 

*'  Translator's note: In the original Russian text this information set 
is denoted by U, which is, however, obviously a misprint. 

■MMMMMMMMMMM 
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In every extensive game, the set of positions together with the 

description of the possible transitions from one position to another. I.e., 

a subject studied by the theory of graphs, plays an essent/a] role. A sys- 

tematical examination of the combinatorial aspects of extensive games re- 

quires the application of terminology and methods of the theory of graphs. 

An extremely great number of game-theoretical results have been exposed 

from this position by Berge in his book /I/. 

The partition or information sets into smaller information sets, 

intuitively means an increase of the players' information and formally - 

an expansion of the sets of their strategies. In particular, after the 

complete partitioning of information sets into one-position sets, the ex- 

tended set of strategies obtained will contain optimal ( correspondingly 

equilibrium) strategies. It is clear that a complete partitioning is suf- 

ficient for the existence of pure optimal strategies, but not necessary. 

Necessary conditions for such a partitioning have been given by Birch /I/. 

In the theory of extensive games stemming from Kuhn's paper /I/, 

it has been assumed that information sets must not "precede themselves", 

i.e., a player must not make decisions twice in one and the same information 

state in a continuing play. This restriction is not quite natural and there- 

fore somewhat restraining. Isbell HI  has initiated the theory of "fini- 

tary" games not restricted by this condition. 

A. At first sight the theorem cf the existence of equilibrium 

situations in pure strategies for games with perfect Information seems to 

be a very general fact capable of broad generalizations. Gale anr5 Stewart /I/, 
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however, have given an example of an extensive game (of course, an Infinite 

one) with perfect Information where the players do not have pure optimal 

strategies. This example has shown that the theory of Infinite extensive 

games with perfect Information Is extremely complicated. Further results 

In this direction are due to Wolfe /I/, Oxtoby /I/, Hanani /I/, Stockl /I/, 

Davis /I/, Myclelskl HI  and others. 

At the same time, a very straightforward utilization of the axiom 

of choice at the construction of this example has given reason for assuming 

that It belongs to the category of paradoxes generated by the application 

of this axiom. Steinhaus and Myclelskl /!/ have occupied themselves with 

the consistent development of such a point of view. They have assumed the 

strict detemlnateness of an antagonistic game with perfect information as 

an Independent axiom of set theory (In its abstract formulation, obviously, 

one can do this without using game-theoretical terminology) , and have named 

it the axiom of determlnateness. The intuitive meaning of this axiom con- 

sists in the fact that for participants who are absolutely informed about 

the rules and the details of the game, the outcome of the play is predeter- 

mined. Such a game has to be a purely combinatorial one. It is clear that 

the axiom of determlnateness is inconsistent with Gale's and Stewart's ex- 

ample. In fact, it is inconsistent with the axiom of choice applied in the 

construction of this example. To a great extent, the axiom of determlnateness 

is also apt to replace the axiom of choice. Myclelskl 111  has shown that 

one succeeds In proving a great number of consequences of the axiom of choice 

on the basis of the axiom of determlnateness, without using the axiom of the 

choice. In particular, in his paper written with Swierczkowski /I/, the 

• f -"• 
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Lebesque measurabllity of any linear space has been derived from the axiom 

of detemlnateness. A further study of games with perfect Information has 

been carried out by Myclelskl In his paper /I/. 

5. In extensive games, payoffs are received by the players only at 

end positions of the game. Therefore, formally speaking, the players can com- 

pare among themselves only end positions. The player's occupation of any po- 

sition, however, (speaking for the sake of security about antagonistic games) 

already predetermines a certain payoff by which It Is possible to measure 

the value of „he position Itself. Thus, the transition of the play from 

posit*m  to position can mean for the player a gaining of some temporary 

advantages which may get lost completely In a further non-optimal play. In 

connection with all that has been said above. It seems expedient to examine 

such games where the Immediate struggle Is carried on for some positions of 

a game which turn out to be specific recources of the players In the course 

of their further struggle. Such an approach applied to chess has been developed 

In detail by M. M. Botvlnnlk /!/. 

In the literature, very many games of this kind have been examined. 

One of the most general Is the scheme of the recursive game Introduced by 

Everett /I/. 

The play of a recursive game consists of a sequence of elementary 

(for Instance, matrix) games where the outcome of every elementary game Is 

again an elementary game or the end ot the whole game accompanied by some 

payoff. Speaking more precisely. If ac come moment of time an elementary 
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game T    was played where  the players chose  the strategies 1, j,  then with 

certain probabilities   depending on the strategies chosen]   at the next  mo- 

ment either some  elementary game T    will be played from the same set,  or 

the whole play will  terminate.  It  turns out  that  If  the elementary games 

possess values,  then recursive games have values In stationary strategies 

too, and therefore e-optimal stationary strategies for any e>0. 

•: 

6. Recursive games are closely related to games of survival in- 

vestigated by Milnor and Shapley /I/. In such games, at any Instant of 

time the players have r and R - r (0<r<R) resources respectively, and play 

a matrix game | |a  j |. The payoffs In this game are added to the player's 

resources with which they enter into the game at the next instant. The 

game terminates and the winner obtains one unit fchose dimension, generally 

speaking, is not connected with the dimension of resources) when the resources 

of one of the players are exhausted. 

If such a game has a value, then it is a function of the initial 

amount of player 1's resources r , which is a monotonic solution of the 

functional equation 

^(r)-val  |!t(r + aij)|| 

with boundary conditions 

0 if r<0 

1 if r>R. 

A generalization of this game can be reached by passing from matrix games 

to arbitrary non-coalition games, or, what is virtually the same thing, to 

vector resources. Games of this kind have been examined by I. V. Romanovskl /I/. 
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Attritlon games are similar to games of survival; as to them, 

see the paper by I shell and Mar low /I/. 

7. New difficulties of fundamental character emerge from passing 

to the study of dynamic games where the players' decisions are made not 

at discrete instants, but are a process continuous in time. The funda- 

mental class of such games studied is the class of differential games. 

A differential game can be schematically described in the follow- 

ing way. Let there be given a bounded, connected open subset A of a fin- 

itely dimensional Euclidean space, the starting point x0 and the set of 

differential equations 

gj- - fjCiCp ... , xn; t.f, Y). J - 1, ...,n.      (5) 

The variables x. are called state variables (or phase coordinates), f 

and ¥ - control variables (for the first and second player respectively) 

which are selected tiy the two players from suitably prescribed sets of 

functions depending on the time parameter t and on the state variables. 

If the selection of functions *f and * results in the solvability of the 

system of differential equations, then the play of the game Is represented 

by a trajectory in the set A. The payoff function Is defined on the set 

of all trajectories. It is usually assumed that the game terminates when 

the trajectory attains the boundary of A, and the payoffs are determined at 

the boundary points. If a trajectory stays within A for an infinite time, 

then some payoff is defined for it too. 



-123- 

I 

In the definition quoted, some inaccuracy in the definition of 

the strategy sets of the players attracts attentions For some functions 

^ and T being strategies. It is obviously necessary that inserting these 

^ and H1 into (5) yields a system of differential equations having a u- 

nique solution. 

A typical example for a differential game is the game of "pursuit" 

where the phase coordinates determine the position (sometimes the speed 

too) of certain objects, some of which are called pursuers and others e- 

vaders. Every player controls his objects through the coordinates. The 

game terminates at a moment fixed in advance where the pursuers' payoff 

Is determined by the "nearness" of the pursuing objects to the evading 

ones at the moment of termination of the game.  (The first mathematical des- 

cription of the game of pursuit is due to Warmus 111.) 

A second example is provided by the game of "pulling over", where 

two players exert forces on some material point striving to attach the 

desired phase coordinates to it at the end of the game. Obviously, pur- 

suit games can be regarded as a subcase of the games of "pulling over" 

(in the corresponding phase space). 

A systematic examination of certain examples of games of this kind, 

as well as of general theoretical considerations, has been undertaken by 

Isaacs In the early 'fifties. His first papers appeared as Rand Corpora- 

tion memoranda in 1954 and 1955, and a detailed exposition of the results 

obtained has been published in the form of a monograph /I/. In fact, I- 

saacs has obtained his results by applying Bellman's method of dynamic 
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programmlng and therefore we are meeting all the difficulties due to this 

method. Further results in this direction have been obtained by L. A. 

Petroslan /1,2/. A more subtle and powerful approach can be found In L. 

S. Pontryagln's papers /!/. This approach is based on reasonings closely 

related to those which lead to the maximum principle. Here the solution 

of a differential game is reduced to the solution of the system of or- 

dinary differential equations. 

Attempts have been made to reduce the solution of a differential 

game to the solution of a game with discrete time and a subsequent limit 

operation. Here papers by Scarf /I/ and Fleming /I,2,3/ are noteworthy. 

Thorough Investigations of differential games based on the utili- 

zation of .'he apparatus and results of the calculus of variations have 

bf>en carried out by Fleming and Berkovltz /I/. 

A very detailed survey on contributions to the theory of differ- 

ential games is contained in papers by Simakova /I/ and also Simakova and 

Zellkln III. 
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